

UNIVERSITY OF WATERLOO

Faculty of Engineering

Department of Electrical and Computer Engineering

Analysis of Various

Web and Search

Optimization Methods

QuinStreet, Inc.

Foster City, California

Prepared by

Michael A. Soares

ID [removed]

userid masoares

3A Computer Engineering

11 January 2011

[address removed]

11 January 2011

Dr. Manoj Sachdev, chair
Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario
N2L 3G1

Dear Sir:

This report, entitled “Analysis of Various Web and Search Optimization Methods”, was
prepared as my 3A Work Report for QuinStreet, Inc. This report is in fulfillment of the
course WKRPT 400. The main purpose of this report is to quantitatively analyse the
performance improvement of various web and search optimization methods including the
optimization of PHP code, the use of file caching, and the use of content delivery
networks on one of QuinStreet’s web sites in terms of load time, items loaded, and bytes
loaded and to offer several recommendations to QuinStreet which may help in improving
the performance of some of its other web sites.

I was employed as a PHP Web Developer Intern working alongside several other
developers as well as my team’s PHP Tech Lead, Jaime Wheeler, who also oversaw my
role. My primary responsibilities included fixing web site issues, doing custom PHP and
JavaScript development for a variety of QuinStreet’s new and existing web sites, as well
as working with Mr. Wheeler to improve the performance of several web sites.

I would like to thank Mr. Jaime Wheeler for providing me with encouragement, valuable
ideas and information over the work term, which helped me in finalizing this report. I
hereby confirm that I have received no further help other than what is mentioned above in
writing this report. I also confirm this report has not been previously submitted for
academic credit at this or any other academic institution.

Sincerely,

Michael A. Soares
ID [removed]

 iii

Contributions

For the past four months, I was employed at QuinStreet, Inc. (“QS”) in Foster City,

California as a PHP Web Developer Intern. I was one of the many developers on the

Financial Services team, which also consisted of a group of producers who managed the

content and initiatives on all of QS’s finance web sites. I worked and collaborated with

several of the other developers and producers on a daily basis, as well as my supervisor,

Mr. Jaime Wheeler, dealing mostly with custom PHP: Hypertext Processor (“PHP”) and

JavaScript development and web site performance improvements. Strategizing with my

colleagues for Munchkin, a popular card game, was also a daily activity.

My colleagues and I were primarily responsible for fixing various issues with existing

finance web sites and implementing new features and other initiatives on said web sites,

whether said features or initiatives were for content or performance. Web sites and new

web site features were usually developed using PHP (on the CodeIgniter Model-View-

Controller framework), Cascading Style Sheets (“CSS”), and the jQuery JavaScript

(“JS”) library. All work was done collaboratively through the use of a file repository

with source control. Code was thoroughly tested and then documented so that future

developers modifying any existing code would not have a difficult time doing so.

While at QS, my primary responsibilities involved working with new and existing code,

but more specifically encompassed:

§ Developing a high quality life insurance calculator in a relatively short amount of

time for use on one of QS’s high profile web sites using PHP, CSS, and jQuery,

§ Conducting A/B tests on a variety of QS’s web sites to measure changes in

performance and other analytics,

§ Correcting web site bugs/issues submitted by producers, and

§ Researching new ways of and implementing a variety of key initiatives for

reducing the actual and perceived load times on some of QS’s top performing web

sites in order to improve user experience and search engine optimization (“SEO”).

 iv

For the majority of the term and as I already mentioned, I was diligent in aiding my

supervisor implement a variety of key initiatives for reducing the actual and perceived

load time on some of QS’s top performing web sites. The web sites these initiatives were

implemented on were excellent candidates since some received upwards of tens of

thousands of unique hits per day and a decrease in load time (or increase in performance)

would most likely keep visitors on the web site for longer periods of time and most

probably attract new visitors as well.

Due to the fact that the implementation of these speed initiatives required me to conduct a

variety of different benchmarks, sometimes on the development versions of the web sites

in addition to the production ones, the research, implementation phases, and analyses that

were done in regards to these speed initiatives proved to be quite suitable for a work term

report.

This is the main relationship between this report, the knowledge I gained, and the tasks I

performed while working at QuinStreet. The data collected and the analyses performed

in this work term report are beneficial to me in many ways, primarily because they have

given me the opportunity to learn well beyond what I thought I would as PHP Web

Developer Intern. It made me realize that there is more to development than just coding

and that the load time of a web site can, over time, make a difference in how visited or

unvisited a web site goes on the Internet. This project and this subsequent report have

also provided me with the ability to benchmark web site performance and evaluate the

resultant quantitative data.

In the broader scheme of things, my research on this report topic should prove to be

beneficial for QuinStreet, not only on the Financial Services team, but other teams as

well. Since QS has a rather large portfolio of web sites, it must make every effort

possible to optimize its largest and fastest growing ones first in order to attract new

visitors. In this report, I provide QS with several recommendations on the speed

initiatives implemented and which ones reduced the load time of web sites the most (in

terms of percentage).

 v

Executive Summary

The main purpose and scope of this report is to qualitatively and quantitatively analyse

the key initiatives and methods used to reduce the load time on one of QuinStreet’s more

popular web sites before and after the change. This report will suggest to QuinStreet

which methods are the most optimal in terms of implementation and change, as well as

which methods should be looked into more so as to optimize their sites more. I have

identified several recommendations in this report that will optimize the performance of

QuinStreet’s web sites which will allow QuinStreet to most likely generate more revenue

by retaining its web site visitors for a longer amount of time due to the reduced load time

of its web pages.

The major points in this report are that caching dynamically generated files, using a

content delivery network, removing function calling from loop conditions, and forcing

string concatenation where possible all reduce the load time of web sites by a reasonable

amount. The first section sets out the scope, purpose, and outline of the report. The

second section describes the key initiatives and methods QuinStreet used to reduce the

load time of one of it’s more popular web sites. The third section describes the test tools

used to measure the load time on the same web site before and after the implementation

of each of the key initiatives already mentioned. The final sections provide conclusions

and recommendations based on the analyses in the preceding sections.

The major conclusions of this report will confirm that using a content delivery network

does not reduce the load time of a web site as much as caching dynamically generated

files does. Enabling file caching for these types of files actually reduces the load time of

web site by almost two times than any other method tested. In addition, it is not known

what the actual effect will be in production of removing any function calls from within

loop conditions or forcing string concatenation, despite the development and production

environments being relatively similar to each other, configuration-wise.

 vi

Major recommendations in this report are also identified in that QuinStreet should enable

the use of file caching across its entire portfolio of web sites. It should also use a content

delivery network for its web sites with the ability to cache files to minimize the load and

traffic on one server and distributing it across multiple ones, as well as to minimize load

time. Lastly, QuinStreet should further investigate whether modifying iterative blocks of

PHP code and using string concatenation as is mentioned in this report will have as

optimal as an effect in the production environment.

 vii

Table of Contents

Contributions .. iii	

Executive Summary ... v	

List of Figures .. viii	

List of Tables .. ix	

1	
 	
 	
 	
 Introduction .. 1	

1.1	
 Web and Search Engine Optimization ... 1	

1.2	
 Purpose ... 2	

1.3	
 Scope .. 2	

1.4	
 Outline .. 2	

2	
 	
 	
 	
 Performance Enhancements ... 4	

2.1	
 Simple and Effective Speed Optimization Methods .. 4	

2.1.1	
 Counting in for-Loop Conditions .. 4	

2.1.2	
 Single Quotes vs. Double Quotes in String Concatenation 5	

2.2	
 File Caching ... 6	

2.3	
 Using a Content Delivery Network .. 6	

3	
 	
 	
 	
 Quantifying Performance Enhancements .. 8	

3.1	
 Introduction .. 8	

3.2	
 Measuring Performance Changes ... 8	

3.3	
 Load Time Results .. 9	

3.3.1	
 Using a count Variable for Inserting Content Dynamically 9	

3.3.2	
 Forcing the Use of Single Quotes and String Concatenation 10	

3.3.3	
 Enabling File Caching ... 10	

3.3.4	
 Serving Content Through a Content Delivery Network 11	

3.4	
 Optimal Performance Enhancers .. 11	

4	
 	
 	
 	
 Conclusions ... 13	

5	
 	
 	
 	
 Recommendations .. 14	

Glossary ... 15	

References ... 16	

Appendix A – Using a count Variable for Inserting Content Dynamically – Test
Results ... 17	

Appendix B – Forcing the Use of Single Quotes Where Possible – Test Results ... 18	

Appendix C – Enabling File Caching – Test Results .. 19	

Appendix D – Using a Content Delivery Network – Test Results 21	

 viii

List of Figures

Figure 1. A generic for-loop used to dynamically insert content on a webpage. 4	

Figure 2. A generic for-loop used to dynamically insert content on a webpage with the

applied count modification. ... 5	

Figure 3. Examples of string concatenation and string parsing using single and double

quotes, respectively. ... 5	

Figure 4. Bar graph showing the load time differences between the 4 methods used. 12	

 ix

List of Tables

Table 1. Full set of results (including averages) before and after the count change was

made. .. 17	

Table 2. Full set of results (including averages) before and after the string concatenation

change was made. ... 18	

Table 3. Full set of results before file caching was enabled. .. 19	

Table 4. Full set of results after file caching was enabled. ... 20	

Table 5. Full set of results before a content delivery network was used. 21	

Table 6. Full set of results after a content delivery network was used. 22	

 1

1 Introduction

QuinStreet, Inc. (“QS”) is a vertical marketing and online media company which targets

such verticals as education, financial services, business-to-business, and travel [1]. QS

delivers qualified clicks and inquiries to its clients at a reduced cost which enables its

clients to increase their sales with greater scalability. In other words, QS matches

qualified visitors to its web sites (i.e., customers) to their clients (e.g., insurance

companies).

QS is currently looking into optimizing some of its top performing web sites by reducing

the amount of time it takes to load individual web pages; this optimization process is

included in the broader scheme of web and search engine optimization (“SEO”). As a

result, this will potentially attract more visitors by increasing QS’s web sites’ search

engine ranks and by increasing the average time visitors spend on its web sites [2].

Through various other and unrelated steps, this will help QS generate more revenue in the

long run due to the way the company operates (explained above).

In this section, the purpose and scope of the report are both set out and essential

background information is presented on the topic.

1.1 Web and Search Engine Optimization
In the context of this report, web and search engine optimization refer to the optimization

of a whole web site or individual web pages by reducing the time it takes for content (i.e.,

images, text, external scripts, etc.) to fully load. However, in general, search engine

optimization usually refers to the application of any method used that would cause the

rank(s) of a whole web site or individual web pages (or relevance) to increase [3]. Apart

from increasing a web site’s performance, some other methods known for increasing a

web site’s rank include, but are not limited to, giving a web site better visibility by

linking to it from several other relevant or popular web sites, using relevant keywords in

 2

the file names for web pages or in the content on web sites, and preventing undesirable

content from being indexed by a search engine [3].

1.2 Purpose
Because QS generates most of its revenue by selling qualified clicks to its clients, it must

be able to collect as many of these as possible without losing them to competitors

because of a small number of slow-loading web pages. Optimizing more of QS’s web

sites will potentially increase the number of visitors each web site gets. Thus, this report

will explain several different methods of optimizing web pages, it will analyse the

quantitative performance differences of each of the methods, and give some technical

reasoning as to which performance-enhancing method will work the best (i.e., attract

more visitors based on the reduction in load time).

1.3 Scope
This report will include both qualitative and quantitative analyses of the methods used to

reduce the load time of some of QS’s web sites and include technical reasoning as to

which method will work the best in the long run.

1.4 Outline
The sections in this report identify and summarize the performance-enhancing methods

QS’s Financial Services team has used on one of its web sites chosen for preliminary web

and search engine optimization. This report also provides qualitative and quantitative

analyses of the performance-enhancing methods and provides a comparison of each one

against every single one of the others. A glossary has also been included for easy

reference of technical terms used in this report. Section 2 introduces the main SEO topic

discussed in this report (i.e., speed) and the related performance-enhancing methods and

outlines some of their key features. Section 3 describes the tools used to gather the

resultant data. It also outlines and explains the outcomes of applying each of the

 3

performance-enhancing methods to several of QS’s similarly structured web sites and

attempts to provide justifications for the results obtained. Finally, conclusions and

recommendations are outlined at the end of the report.

 4

2 Performance Enhancements

2.1 Simple and Effective Speed Optimization Methods
Some simple and effective speed optimization methods that were implemented as a part

of QS’s key speed initiatives included conducting several, but very informal code reviews

of existing PHP code. Most of these code reviews looked at the way content was being

inserted onto web pages (i.e., whether it was being inserted dynamically or statically).

These optimization methods are presented in this section, separate from the others in 2.2

and 2.3, as they did not require changes that were overly complex.

2.1.1 Counting in for-Loop Conditions
In most of the cases that content was being inserted dynamically, the code that had been

originally written required iterating through arrays containing strings of content in a way

resembling that in Figure 1 (below).

<?php

 // ...

 for($i = 1; $i < count($content_array); ++$i) {

 // insert content

 }

 // ...

?>

Figure 1. A generic for-loop used to dynamically insert content on a webpage.

If content was being inserted dynamically using a for-loop similar to that in Figure 1

(above) using the count function in the condition, the value of count($content_array)

would have to be calculated on each iteration of the loop even though the variable

$content_array was not being changed. What this meant for the webpage this code

was used on was that valuable processor time was being wasted on the server side in

order to simply recalculate said value over and over again instead of simply storing it in a

temporary variable, such as in Figure 2.

 5

<?php

 // ...

 $content_count = count($content_array);

 for($i = 1; $i < $content_count; ++$i) {

 // insert content

 }

 // ...

?>

Figure 2. A generic for-loop used to dynamically insert content on a webpage with the applied

count modification.

The results of moving the count function out of the for-loop’s condition and into a

separate variable like in Figure 2 are discussed in detail 3.3.1.

2.1.2 Single Quotes vs. Double Quotes in String Concatenation
One thing that some PHP developers do not often realize is the difference between using

single quotes and double quotes when dealing with strings. Because PHP is a parsed

language, that is, PHP code is read and executed without doing any pre-compilation of

said code, optimizations on strings cannot be done at the time that code is executed. As a

result, strings sometimes use more memory when combined using surrounding double

quotes instead of single quotes and string concatenation [4]. Strings surrounded by

double quotes have their variables parsed instead of being simply concatenated when

using single quotes, demonstrated in the example in Figure 3 below.

<?php

 $var1 = ‘string’;

 $var2 = ‘this is a ‘.$var.’ with single quotes’;

 $var3 = “this is a $var with double quotes”;

?>

Figure 3. Examples of string concatenation and string parsing using single and double quotes,

respectively.

 6

The results of conducting a code review on one of QS’s web sites and converting double-

quoted strings to single-quoted strings like in Figure 3, where possible, is discussed in 3.

2.2 File Caching
In the context of web development, file caching refers to the pre-generated and

subsequent serving of any non-media and web-related files (e.g., HTML, JavaScript,

CSS, etc.), which may have otherwise been dynamically generated on each page load.

Take a HTML webpage dynamically generated using PHP on each page load as an

example. If that page were to make several calls to an external database and then have to

do something with said data, it could take several seconds before the page could actually

be generated and served up to the user accessing it. A caching tool used for file caching

pre-generates these dynamic pages by means of a single page load or some other trigger,

stores them temporarily until they expire, and then serves the same pre-generated file up

to multiple users. This helps speed up page loads tremendously and reduces the load on a

server and database by making fewer database calls and requiring dynamic pages to be

generated fewer times than usual.

2.3 Using a Content Delivery Network
A content delivery network (“CDN”) is a group or network of computers distributed

throughout an area (e.g., various points in North America and the world) used to

maximize the bandwidth used by clients accessing data on said computers. As opposed

to accessing data on a centralized server, clients accessing a web site making use of a

CDN will be able to retrieve the same data from a server that is located closer to their

geographical location, reducing the time it takes for data to be transferred to their

computer and eliminating the possible bottleneck created when using a single centralized

server.

CDNs, such as those used QS, have the ability to cache files as well, as explained in 2.3.

Thus, retrieving data from a nearby server that has already pre-generated a requested

 7

webpage can be increasingly faster than by just serving files from a CDN with file

caching disabled, as will be shown in 3.

 8

3 Quantifying Performance Enhancements

3.1 Introduction
Before having measured the performance enhancements of the various methods presented

in 2, it was initially believed that using a CDN with the ability to cache files would

increase the performance (i.e., reduce the load time) on one of QS’s web sites the most.

This was based on the following facts:

1) The primary purpose of a CDN is to minimize the amount of traffic going to any

one server by redirecting any one request to a server that is closest to the user

making said request, and

2) Caching dynamic pages for long enough periods of time where data does not

change will significantly reduce the master server’s load.

3.2 Measuring Performance Changes
After implementing QuinStreet’s key speed initiatives, the load times of several web

pages were measured using two tools. For smaller changes that could be tested in a local

development environment, a free tool called Hammerhead for the Mozilla Firefox

browser was used to find the difference in load times with the browser cache disabled [5].

This tool would render each webpage locally within the browser over any set of

iterations. This only gave developers a rough idea of how the changes affected

performance and whether the changes should be put into production or not.

The second tool used was a web-based tool called Keynote [6]. Since this tool is run

remotely, it gives developers a broader idea of how their changes affect performance.

Keynote simply runs a load test against any web site from multiple locations in the world

that one can choose and sends back the results from its servers. Keynote was usually run

after larger performance-affecting changes were made in the production environment

(i.e., 20% change or more using Hammerhead in the development environment).

 9

3.3 Load Time Results
As presented in 2, 4 different performance-enhancing methods were implemented on one

of QS’s content-heavy web sites. The load time changes for each method, whether it was

implemented solely in the development environment or in the live/production

environment, are presented here. Those that were implemented solely in the development

environment were tested using the Hammerhead tool presented in 3.2, whereas those in

the live/production environment were tested using Keynote.

3.3.1 Using a count Variable for Inserting Content Dynamically
After moving the count function out of all for-loop conditions (where found) and into

separate variables as discussed in 2.1.1 on one of QS’s web sites, the load time of a

content-heavy page in the development environment was reduced from an average of

4.29 seconds to an average of 3.58 seconds, or by 18.04%, after using Hammerhead to

reload the page with an empty cache 20 times (see Appendix A for the full set of results).

Thus, a change as small and as simple as this can make a reasonable difference on

content-heavy web pages.

The results of this change do not come as a surprise. Suppose a page, similar to the ones

on QS’s web site, being requested had ! number of for-loops in which content was

being dynamically inserted and each of those loops iterated approximately ! number of

times for each piece of content being inserted with count($content_array) being

called in each of their conditions, where ! ≪ !. In such a case, and similar to the pages

that were actually tested, the runtime for each page generation would be ! !" in big-O

notation, or simply ! ! since ! ≪ !. After implementing the change presented here,

the runtime was reduced to ! ! = ! 1 since part of the condition (i.e.,

count($content_array)) was moved outside of the loops and replaced with a single

variable, calculated once per loop instead of ! times.

 10

3.3.2 Forcing the Use of Single Quotes and String Concatenation
Tracking down the use of double quotes where they were being unnecessarily used was

not very difficult to accomplish. A simple search and replace of double-quoted strings

and quick analysis of the code was all that was needed to implement this change. Using

string concatenation with single quotes as opposed to string parsing in strings with

variables surrounded by double quotes reduced the load time of a content-heavy webpage

in a development environment from an average of 3.58 seconds to an average of 3.09

seconds, or by 14.69%, after using Hammerhead to reload the page with an empty cache

20 times (see Appendix B for the full set of results).

The technical explanation for this reduced load time can be found in the opcodes

generated by PHP when going through each of the strings. The resultant opcodes

generated by PHP when variables are inserted into strings surrounded by double quotes is

much longer than that of single-quoted strings being concatenated with other variables

and thus causes the processor to interpret more instructions than should actually be

necessary [7].

3.3.3 Enabling File Caching
Prior to enabling file caching for some JS and CSS files on one of QS’s web sites, the

same JS and CSS files were being minified (i.e., whitespace and comments were

removed) and concatenated together so as to reduce the number of requests a browser

would have to make and to reduce the number of bytes being downloaded. This process

took quite upwards of several seconds, thus file caching had to be turned on to reduce

that number. After doing so in the production environment, the web site performed

extremely well. The average load time on the site had been reduced by an average of

31.8% (measured using Keynote) where the site was accessed from different points

across the United States, with the highest reduction being the load time from an area in

San Francisco, California at 50.9% (see Appendix C for the full set of results).

 11

Like the method presented in 3.3.1, this also did not come as much of a surprise. The

minification and concatenation process, as previously explained, is what took the most

time to do. Performing this once, caching the minified and concatenated files, and then

serving those files when requested definitely improved performance by quite a bit. Had

files already been static before file caching was turned on, this method would have had

little to no effect.

3.3.4 Serving Content Through a Content Delivery Network
Serving content through a CDN must be done with extreme caution. In the case of the

QS web site at hand, the content on it was updated at most twice per day. Since content

was only being dynamically inserted and not dynamically generated throughout the day,

it was assumed that no major problems would be encountered. By making use of a CDN

with the ability to do site-wide file caching (i.e., including HTML files as well as CSS

and JS ones), the site load time was reduced by an average of 18.64% (measured using

Keynote), with the highest reduction being the load time from an area in Dallas, Texas at

28.41% (see Appendix D for the full set of results).

3.4 Optimal Performance Enhancers
It was expected that the reduction in load time by the CDN would be the most out of all

of the methods implemented and presented in 2. Obviously, this was not the case; file

caching of the JS and CSS files outperformed the usage of the CDN by almost twice as

much. However, using the CDN was quite successful in further reducing the load time of

the web site by quite a bit. Overall, each performance method did a relatively good job at

reducing the load time on the web site. 3 out of the 4 methods presented reduced the load

time by more or less the same amount (percentage-wise) despite the small differences

between the development and production environments, as can be seen in Figure 4 on the

following page.

 12

Figure 4. Bar graph showing the load time differences between the 4 methods used.

Thus, as can be seen in Figure 4 above, the best method to use when wanting to minimize

the amount of time necessary to load a webpage is file caching when dealing with

dynamically generated page as was the case here, followed by using a CDN. The 2 other

methods can be implemented at the discretion of the developer, although they do offer

quite an enhancement to an already slow web site.

0.00%	

5.00%	

10.00%	

15.00%	

20.00%	

25.00%	

30.00%	

35.00%	

For-­‐Loop	

Modifica5on	
 (Dev)	

String	
 Concatena5on	

(Dev)	

File	
 Caching	
 (Prod)	
 CDN	
 (Prod)	

Pe
rc
en

t	
 (
%
)	

Performance-­‐Enhancing	
 Method	

Percent	
 Decrease	
 in	
 Website	
 Load	
 Time	

 13

4 Conclusions

From the analysis in the report body, it is concluded that the implementation of a file

cache on any web site or webpage where files are being dynamically generated or

modified unnecessarily by PHP code will result in reduced load time for said web site or

webpage. Doing so will also reduce the server load, including the processor time and

memory used. Enabling a file cache where only static files are served up to a user will

have little to no effect.

Apart from file caching, using a content delivery network to serve files will also deliver a

performance boost, though not as much as that when enabling file caching.

Lastly, while modifying for-loops to exclude a function from being called from within a

condition as well as using string concatenation and single quotes will help boost

performance in a development environment, it is not known what the actual effect will be

in production, despite the development and production environments being relatively

similar to each other, configuration-wise.

 14

5 Recommendations

Based on the analysis and conclusions put forth in this report, it is recommended that

QuinStreet implement the following recommendations across their entire portfolio of web

sites:

1) Enable the use of file caching across all web sites, keeping in mind that this will

only affect dynamically changing files the most.

2) Use a content delivery network with the ability to cache files to minimize the load

and traffic on one server and distributing it across multiple ones, as well as to

minimize load time.

3) Further investigate whether modifying iterative blocks of PHP code (i.e., for-

loops) and using string concatenation as mentioned in this report will have as

optimal as an effect in the production environment as was found and analysed in

the development environment.

By implementing one or more of the above recommendations, these performance-

enhancing methods are sure to help QuinStreet receive more visitors to their web sites

and, as a result, allow them to generate more revenue than they are currently generating.

QuinStreet will be able to benefit from optimized web sites the most by caching their web

sites’ files and using CDNs where possible.

 15

Glossary

Cache – A cache transparently stores data so that any subsequent requests for said data

will result in it being served faster.

CDN – An acronym for “Content Delivery Network” – A content delivery network is a

group or network of computers distributed throughout an area (e.g., various points in

North America and the world) used to maximize the bandwidth used by clients accessing

data on said computers.

CSS – An acronym for “Cascading Style Sheets” – CSS is a style sheet language that is

used to format and present a document written in a markup language such as HTML.

HTML – An acronym for “HyperText Markup Language” – HTML is a markup

language predominantly used for web pages.

JS – An acronym for “JavaScript” – In the context of this report, JavaScript refers to the

client-side code that is run by a JavaScript-capable browser after a web page has fully

loaded.

Minification – Minification is the process of removing all unnecessary source code (i.e.,

white space, comments, etc.) without changing the functionality of the surrounding code.

Opcodes – Short for “Operation Codes” – Opcodes are the machine language instructions

that specify what operations the machine at hand must perform.

PHP – An acronym for “PHP: Hypertext Preprocessor” – A hypertext preprocessor for

interpreting and rendering coded web applications.

SEO – An acronym for “Search Engine Optimization” – The process of improving the

ranking or visibility of a web site in search engines’ results by means of reducing load

time, writing articles with unique content, including keywords in on a web page, etc.

Server Load – For single-processor systems, the server load can be thought of as a

percentage of system utilization over a period of time. For a system with multiple

processors or processor cores, one must divide the number by the number of total

processor cores, and it too represents system utilization over a period of time.

 16

References

[1] QuinStreet, Inc., “What We Do | QuinStreet,” 2009. [Online]. Available:
http://www.quinstreet.com/what_we_do/. [Accessed: Jan. 5, 2011].

[2] A. Singhal, “Using site speed in web search ranking,” 2010. [Online]. Available:
http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-
search-ranking.html. [Accessed: Jan. 6, 2011].

[3] S. Nelson and J. Simek. “Optimizing Your Web Site: The ABC’s of SEO”. Law
Practice Management, 34, pp. 18-21, April/May 2008.

[4] The PHP Group, “PHP: Strings - Manual,” 2011. [Online]. Available:
http://ca.php.net/types.string/. [Accessed: Jan. 7, 2011].

[5] S. Souders, “Hammerhead,” 2008. [Online]. Available:
http://stevesouders.com/hammerhead/. [Accessed: Jan. 7, 2011].

[6] Keynote Systems, “Web Load Testing Products,” 2011. [Online]. Available:
http://www.keynote.com/products/web_load_testing/. [Accessed: Jan. 7, 2011].

[7] Zvonko, “PHP Myth Busters: Using single quotes on string is faster then double
quotes,” 2010. [Online]. Available: http://www.codeforest.net/php-myth-busters-
using-single-quotes-on-string-is-faster-then-double-quotes/. [Accessed: Jan. 8,
2011].

 17

Appendix A – Using a count Variable for Inserting Content

Dynamically – Test Results

The full set of test results, including the averages, for the load times collected after 20

iterations before and after the count change was made is included in Table 1 below.

Table 1. Full set of results (including averages) before and after the count change was made.

Iteration	
 #	
 Load	
 Time	
 Before	
 Change	
 (s)	
 Load	
 Time	
 After	
 Change	
 (s)	

1	
 5.23	
 3.34	

2	
 3.34	
 3.33	

3	
 4.52	
 4.07	

4	
 4.35	
 3.32	

5	
 4.22	
 3.87	

6	
 3.89	
 3.54	

7	
 4.38	
 3.96	

8	
 3.45	
 5.23	

9	
 4.23	
 2.87	

10	
 4.34	
 4.23	

11	
 4.46	
 2.34	

12	
 5.07	
 3.52	

13	
 4.32	
 3.35	

14	
 4.87	
 3.43	

15	
 4.21	
 4.33	

16	
 4.25	
 3.38	

17	
 4.19	
 2.45	

18	
 3.87	
 3.23	

19	
 4.2	
 3.2	

20	
 4.39	
 4.58	

Average	
 4.29	
 3.58	

The iteration numbers in Table 1 above do not actually directly correlate with the results

from before and after the change. They are included solely to differentiate between the

results. A full analysis of the results above can be found in 3.3.1.

 18

Appendix B – Forcing the Use of Single Quotes Where Possible – Test

Results

The full set of test results, including the averages, for the load times collected after 20

iterations before and after the string concatenation change was made is included in Table

2 below.

Table 2. Full set of results (including averages) before and after the string concatenation change

was made.

Iteration	
 #	
 Load	
 Time	
 Before	
 Change	
 (s)	
 Load	
 Time	
 After	
 Change	
 (s)	

1	
 3.76	
 2.89	

2	
 3.2	
 3.01	

3	
 4.03	
 3.73	

4	
 3.21	
 3.23	

5	
 3.35	
 3.12	

6	
 3.54	
 2.86	

7	
 3.53	
 3.1	

8	
 2.89	
 4.01	

9	
 2.87	
 2.76	

10	
 4.23	
 3.97	

11	
 5.23	
 2.34	

12	
 3.39	
 2.55	

13	
 3.35	
 3.21	

14	
 3.15	
 3.25	

15	
 4.23	
 3.54	

16	
 3.52	
 2.96	

17	
 3.43	
 2.33	

18	
 3.05	
 3.32	

19	
 4.55	
 2.65	

20	
 3.11	
 3.01	

Average	
 3.58	
 3.09	

The iteration numbers in Table 2 above do not actually directly correlate with the results

from before and after the change. They are included solely to differentiate between the

results. A full analysis of the results above can be found in 3.3.2.

 19

Appendix C – Enabling File Caching – Test Results

The full set of results for the load times, bytes downloaded, and DNS request time using

Keynote before file caching was enabled is included in Table 3 below.

Table 3. Full set of results before file caching was enabled.

Locations:	
 Seattle	

Qwest	

San	

Francisco	

AT&T	

New	
 York	

Cogent	

Los	

Angeles	

Cogent	

Dallas	
 SBC	
 Chicago	

AT&T	

Atlanta	

Sprint	

Component	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	

Before	
 (2010-­‐09-­‐28	
 11:45	
 AM	
 PST)	

DNS	
 Lookup	
 	
 0.097	
 0.161	
 0.265	
 0.175	
 0.325	
 0.224	
 0.277	

Initial	

Connection	
 	
 0.024	
 0.014	
 0.217	
 0.098	
 0.049	
 0.059	
 0.086	

SSL	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

Redirection	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

Request	

Time	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

First	
 Byte	

Download	
 	
 0.036	
 0.093	
 0.217	
 0.215	
 0.06	
 0.074	
 0.111	

Base	
 Page	

Download	
 	
 0.279	
 0.208	
 1.114	
 0.318	
 0.447	
 0.25	
 0.234	

Client	
 Time	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

Content	

Download	
 	
 3.275	
 3.875	
 17.075	
 11.827	
 5.338	
 5.728	
 7.361	

Total	
 Time	
 3.711	
 4.351	
 18.888	
 12.633	
 6.219	
 6.335	
 8.069	

Avg.	
 Bytes	

Downloaded	
 414150	
 414312	
 414149	
 414302	
 414296	
 414005	
 414294	

A full analysis of the results above can be found in 3.3.3.

 20

The full set of results for the load times, bytes downloaded, and DNS request time using

Keynote after file caching was enabled is included in Table 4 below.

Table 4. Full set of results after file caching was enabled.

Locations:	
 Seattle	

Qwest	

San	

Francisco	

AT&T	

New	
 York	

Cogent	

Los	

Angeles	

Cogent	

Dallas	
 SBC	
 Chicago	

AT&T	

Atlanta	

Sprint	

Component	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	

After	
 (2010-­‐09-­‐28	
 12:00	
 PM	
 PST)	

DNS	
 Lookup	
 	
 0.098	
 0.055	
 0.219	
 0.07	
 0.288	
 0.18	
 0.365	

Initial	

Connection	
 	
 0.023	
 0.015	
 0.094	
 0.129	
 0.05	
 0.06	
 0.085	

SSL	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

Redirection	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

Request	

Time	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

First	
 Byte	

Download	
 	
 0.038	
 0.13	
 0.212	
 0.23	
 0.165	
 0.074	
 0.347	

Base	
 Page	

Download	
 	
 0.169	
 0.141	
 0.378	
 0.343	
 0.233	
 0.26	
 0.283	

Client	
 Time	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

Content	

Download	
 	
 2.415	
 1.794	
 9.219	
 6.829	
 3.589	
 4.153	
 7.135	

Total	
 Time	
 2.743	
 2.135	
 10.122	
 7.601	
 4.325	
 4.727	
 8.215	

Avg.	
 Bytes	

Downloaded	
 404111	
 404174	
 404201	
 404187	
 403913	
 403877	
 404241	

A full analysis of the results above can be found in 3.3.3.

 21

Appendix D – Using a Content Delivery Network – Test Results

The full set of results for the load times, bytes downloaded, and DNS request time using

Keynote after file caching was enabled is included in Table 5 below.

Table 5. Full set of results before a content delivery network was used.

Locations:	
 Seattle	

Qwest	

San	

Francisco	

AT&T	

New	
 York	

Cogent	

Los	

Angeles	

Cogent	

Dallas	
 SBC	
 Chicago	

AT&T	

Atlanta	

Sprint	

Component	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	

Before	
 (2010-­‐10-­‐20	
 2:00	
 PM	
 PST)	

DNS	
 Lookup	
 	
 0.003	
 0.012	
 0.012	
 0.02	
 0.018	
 0.017	
 0.018	

Initial	

Connection	
 	
 0.024	
 0.013	
 0.084	
 0.019	
 0.05	
 0.061	
 0.085	

SSL	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

Redirection	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

Request	

Time	
 	
 0	
 0	
 0	
 0	
 0.001	
 0	
 0.001	

First	
 Byte	

Download	
 	
 0.049	
 0.035	
 0.106	
 0.029	
 0.061	
 0.085	
 0.099	

Base	
 Page	

Download	
 	
 0.146	
 0.237	
 0.235	
 0.204	
 0.394	
 0.229	
 0.285	

Client	
 Time	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

Content	

Download	
 	
 6.301	
 2.117	
 5.51	
 1.82	
 7.233	
 3.989	
 5.635	

Total	
 Time	
 6.523	
 2.414	
 5.947	
 2.092	
 7.757	
 4.381	
 6.123	

Avg.	
 Bytes	

Downloaded	
 381213	
 381088	
 380960	
 381207	
 380855	
 380987	
 380939	

A full analysis of the results above can be found in 3.3.4.

 22

The full set of results for the load times, bytes downloaded, and DNS request time using

Keynote after file caching was enabled is included in Table 6 below.

Table 6. Full set of results after a content delivery network was used.

Locations:	
 Seattle	

Qwest	

San	

Francisco	

AT&T	

New	
 York	

Cogent	

Los	

Angeles	

Cogent	

Dallas	
 SBC	
 Chicago	

AT&T	

Atlanta	

Sprint	

Component	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	
 Time	
 (s)	

After	
 (2010-­‐11-­‐29	
 3:00	
 PM	
 PST)	

DNS	
 Lookup	
 	
 0.192	
 0.051	
 0.205	
 0.071	
 0.195	
 0.202	
 0.216	

Initial	

Connection	
 	
 0.002	
 0.004	
 0.001	
 0.001	
 0.003	
 0.003	
 0.002	

SSL	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

Redirection	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

Request	

Time	
 	
 0	
 0	
 0.001	
 0.001	
 0	
 0	
 0	

First	
 Byte	

Download	
 	
 0.432	
 0.529	
 0.555	
 0.429	
 0.356	
 0.486	
 0.515	

Base	
 Page	

Download	
 	
 0.023	
 0.015	
 0.091	
 0.019	
 0.048	
 0.006	
 0.086	

Client	
 Time	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

Content	

Download	
 	
 1.254	
 1.117	
 1.565	
 1.268	
 1.534	
 1.316	
 1.482	

Total	
 Time	
 1.903	
 1.716	
 2.418	
 1.789	
 2.136	
 2.013	
 2.301	

Avg.	
 Bytes	

Downloaded	
 325983	
 325927	
 325858	
 325803	
 325756	
 326036	
 325921	

A full analysis of the results above can be found in 3.3.4.

