

UNIVERSITY OF WATERLOO

Faculty of Engineering

Department of Electrical and Computer Engineering

Runtime Analysis of

XML Serialization in VB.NET

The CUMIS Group Limited

Burlington, Ontario

Prepared by

Michael A. Soares

ID [removed]

userid masoares

2A Computer Engineering

21 September 2009

[address removed]

21 September 2009

Dr. Manoj Sachdev, chair
Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario
N2L 3G1

Dear Sir:

This report, entitled “Runtime Analysis of XML Serialization in VB.NET”, was prepared
as my 2A Work Report for The CUMIS Group Limited. This report is in fulfillment of
the course WKRPT 200. The main purpose of this report is to quantitatively analyse the
different methods in which data, whether contained in a database or another digital
storage medium, can be serialized into XML (i.e., be manipulated into a form in which
another software application can further manipulate said data) and to offer several
recommendations which may help in developing future software applications which may
use said serialization.

I was employed as a Developer and Technical Analyst working with a group of
developers and project leaders managed by Paul Koski; my role was overseen by Emily
Beavis. My primary responsibilities included modifying and upgrading existing VB.NET
applications, developing web applications using XML, ASP.NET and VB.NET and
working with SQL databases.

I would like to thank Mrs. Emily Beavis for providing me with encouragement, valuable
ideas and information over the work term which helped me in finalizing this report. I
hereby confirm that I have received no further help other than what is mentioned above in
writing this report. I also confirm this report has not been previously submitted for
academic credit at this or any other academic institution.

Sincerely,

Michael A. Soares
ID [removed]

 iii

Contributions

For the past four months, I was employed at The CUMIS Group Limited (“CUMIS”) in

Burlington, Ontario as a Developer and Technical Analyst. I was part of the Information

Technology department which consists of approximately 15 to 20 members, eight of

which I worked and collaborated with on a daily basis, dealing with software

development and database manipulation.

The team that I worked with is responsible for designing, developing, modifying and

upgrading both software and web applications (code-wise) in use by CUMIS employees

and credit unions across Canada. It consists mostly of Developers and Technical

Analysts, such as myself during my employment at CUMIS, along with several Database

Administrators (DBAs). Software is designed, developed and modified to meet CUMIS’

needs by working collaboratively with project leaders and members from other

departments and other Information Technology personnel at CUMIS. All software code

developed at CUMIS is run through a thorough code review process with on-site

supervisors and is compiled and then tested by project leaders before being put into the

production environment.

While at CUMIS, my primary responsibilities involved working with new and existing

software code, but more specifically encompassed:

� Developing web applications using tools such as VB.NET, ASP.NET, XML and

HTML,

� Working with web services to interface differently-coded applications,

� Upgrading already-existing code to be fully compliant with Microsoft’s .NET 2.0

Framework and with CUMIS’ coding standards,

� Debugging and properly commenting already-existing code,

� Manipulating database objects within SQL database servers, and

� Researching new technologies to evaluate their use within CUMIS’ existing

environment.

 iv

For the majority of the term, I was diligent in upgrading already-existing VB.NET and

ASP.NET code to be fully compliant with the standards being used by other developers at

CUMIS. At different times throughout the term, I researched different ways of

minimizing the amount of time needed for code reviews as, for the most part, they were

unnecessarily time consuming; the result of my findings involved creating several filters

for a third-party file comparison tool which ignore both line and block comments within

code, something the tool included with Microsoft’s Visual Studio 2005 is not capable of.

The research that was done on this topic was quite insufficient in scope to be suitable for

a work term report. Towards the end of the term, however, Mrs. Emily Beavis, my

supervisor, gave me the opportunity to start the initial development of a new web

application that retrieves data from a SQL database and converts or serializes said data

into Extensible Markup Language (XML) format, which can later be processed by

another application’s web service. However, after leaving CUMIS, I began to have some

doubts in the way that I began to code the web application (VB.NET structures were

used), most likely affecting runtime (the length needed to run the application) which may

become quite lengthy by the end of the web application’s development. Thus, I decided

to challenge myself and took it upon myself to analyse the methods in which I began to

code the aforementioned web application and offer a series of possible solutions that

could be implemented to rectify any unwanted performance issues.

This is the main relationship between this report, the knowledge I gained and the tasks I

performed while working at CUMIS. The data collected and the analyses performed in

this work term report are beneficial to me in many different ways, primarily because it

has given me the opportunity to learn well beyond what I thought I would in my first job

as a Developer and Technical Analyst. This project and this subsequent report have also

provided me with the ability to analyse and evaluate code and quantitative data from a

completely different perspective, including both the code and data discussed in this

report.

 v

In the broader scheme of things, my research on this report topic should prove to be

beneficial for CUMIS and its developers. Since technology is changing at such a fast rate

at the present time, CUMIS has to constantly keep up with the development of said

technologies, but more specifically, software as a whole. In this report, I provide the

Information Technology department and its developers with several recommendations on

how to properly serialize data and how to improve upon the performance of any

application utilizing said XML serialization.

 vi

Executive Summary

The main purpose and scope of this report is to qualitatively and quantitatively analyse

using both VB.NET classes and structures to serialize data into proper XML, which can

be later be manipulated by a web service. This report will suggest to CUMIS ways of

modifying a current web service client which may favour runtime, all while maintaining

functionality. I have identified several recommendations in this report that will reduce

the runtime needed for data to be serialized and which will, overall, allow CUMIS to

import data into its new web application in as little time as possible.

The major points in this report are that each of the major sections in this report identify

and summarize the use of XML serialization and some of the factors contributing to

serialization runtime. The first section describes the application that has been initially

developed and the problem being analysed. The second section analyses XML

serialization and the different methods of serializing data (i.e., by using classes or

structures). The third section quantifies the methods used to serialize the data, as well as

several modified methods, analyses the resultant data, and provides justifications for the

resultant runtimes. The final sections provide conclusions and recommendations based

on the analyses in the preceding sections.

The major conclusion of this report will confirm that structures are slightly easier to

implement and use when dealing with XML serialization due to only needing to declare a

single instance of the main structure as opposed to multiple ones. In addition, it will also

show that the average runtimes, when serializing the same number of elements and levels

of nested elements, for data serialized using both classes and structures are, for the most

part and up to a certain degree of accuracy, identical. Lastly, this report will also confirm

that increasing the number of levels of nested elements needing to be serialized can have

an effect on runtime in a production environment, such as CUMIS’, by approximately

3.5% per new level.

 vii

Major recommendations in this report are also identified in that CUMIS’ should use

structures wherever possible when working with XML serialization. CUMIS’ developers

should also limit the number of levels of nested elements being used when serializing

data to keep runtime to a minimum. If data needs to be split up into separate elements,

developers should ensure that said data is split up into elements within the same level

instead of being nested any further.

 viii

Table of Contents

Contributions .. iii
Executive Summary.. vi
List of Figures... ix
List of Tables ... x

1 Introduction ... 1

1.1 XML Serialization & Web Service Client ... 1

1.2 Purpose ... 2
1.3 Scope .. 2
1.4 Outline .. 2

2 Working with XML Serialization .. 4

2.1 Introduction .. 4
2.2 Defining and Serializing the XML Structure ... 4

3 Quantifying the VB.NET Code .. 7

3.1 Introduction .. 7
3.2 Quantitative Runtime Analysis .. 7

3.3 Possible Solutions .. 10

4 Conclusions .. 12

5 Recommendations.. 13

Glossary ... 14
References ... 15
Appendix A – Serializer Method Differences ... 16

Appendix B – Modified Serializer Methods and Results .. 18

Appendix C – Runtime Test Data ... 25

 ix

List of Figures

Figure 1. Code for a typical XML structure as classes and structures in VB.NET. 5

Figure 2. Generated XML code from the serialized VB.NET code in Figure 1. 6

Figure 3. Method used to calculate the runtime of the serialization methods. 8

Figure 4. Average runtime values from Table 1 plotted on a bar graph. 9

 x

List of Tables

Table 1. Average runtimes of modified serialization methods in seconds. 8

Table 2. Percent differences in runtime between classes and structures. 9

 1

1 Introduction

The CUMIS Group Limited (“CUMIS”), its principal companies, CUMIS Life Insurance

Company and CUMIS General Insurance Company and its subsidiaries partner with

credit unions across Canada to deliver both competitive insurance (e.g., home, auto, life,

disability, etc.) and other financial and non-financial solutions [1]. Most of the financial

tools and other software used by CUMIS employees and partnered credit unions are

written and tested internally in order to offer said competitive, as well as unique, financial

and non-financial solutions.

CUMIS is currently preparing to migrate some of its financial data from an older web

application to one that is newer and better suited for doing business with its clients.

Unfortunately, the data migration is not as simple as one might think. The Structured

Query Language (SQL) database structures for both applications are not identical. In

fact, none of the table or column names and data types are equivalent, thus directly

copying over the old application’s SQL database is not possible. One must either

manually enter records into the new application or code together a web service and

matching client which will map data from the old application’s database to the new one.

In this section, the purpose and scope of the report are both set out and essential

background information is presented on the topic.

1.1 XML Serialization & Web Service Client

In general, the purpose of Extensible Markup Language (XML) serialization in the .NET

Framework is to convert objects created in one application into an open, standards-

compliant language which can be easily transported to or consumed by any other

application which accepts said compliant language as input for further manipulation [2].

For CUMIS’ web service client, an example of which will be further discussed and

analysed in this report, XML serialization is used to map data from the old finance web

application’s database into elements and attributes which can be later consumed and

 2

further manipulated by its corresponding web service. In terms of the example that will

be further discussed, however, generic data is simply mapped to a pre-formed XML

structure in VB.NET and is then serialized into proper XML.

1.2 Purpose

Because the form or structure of the serialized data/corresponding XML can be coded

together in more than one way, this report will focus on and analyse two such methods:

using VB.NET classes and structures. The serialization of both entities, both using the

same “dummy” or generic data, will be analysed in terms of written code and runtime;

factors which may contribute to said length of time will also be identified. In addition,

this report will suggest ways of modifying said code which may favour runtime, all while

maintaining functionality.

1.3 Scope

This report will include qualitative and quantitative analysis of using both VB.NET

classes and structures, serialized into proper XML, which can be consumed by the web

service.

1.4 Outline

The sections in this report identify and summarize the use of both VB.NET classes and

structures. This report also provides a qualitative and a quantitative analysis of using

classes and structures as well as solutions on improving the runtime of using each entity

all while maintaining the same functionality. A glossary has also been included for easy

reference of technical terms used in this report. The first section analyses XML

serialization and the different methods of serializing data (i.e., by using classes or

structures). The second section quantifies the methods used to serialize the data, as well

as several modified methods, analyses the resultant data, and provides justifications for

 3

the resultant runtimes. Finally, conclusions and recommendations are outlined at the end

of the report.

 4

2 Working with XML Serialization

2.1 Introduction

As mentioned in 1.1, XML serialization is used primarily when data, or more

specifically, objects within in an application, must be converted to a standard format for

transport to another application or service; the resultant XML can also be stored

temporarily in memory or permanently for future manipulation [2]. When said XML is

deserialized by a secondary application, that is to say, when the XML is parsed and the

original objects are reconstructed, the original data stored within the objects can be

manipulated in the way the secondary application has been programmed to manipulate

said data (e.g., the data can be run through a series of algorithms or they can be stored in

a database). Both serialization and deserialization of objects can be done by creating an

instance of the XmlSerializer class, included in the System.Xml assembly in VB.NET,

followed by calling the Serialize and Deserialize methods, respectively; this report

focuses primarily on the Serialize method.

Two of the simplest methods of defining the XML code’s structure in VB.NET before

serialization occurs are by creating a root class (as the root node of the XML structure)

and multiple sub-classes or by creating a root structure and multiple sub-structures within

whatever application is being developed. Serializing either classes or structures will

result in the same final XML code, assuming the code to do so is properly written.

2.2 Defining and Serializing the XML Structure

The web service client that was developed for CUMIS uses structures in VB.NET in

order to define the final structure of the serialized XML. Side-by-side with similar code

written as classes used to hold some very simple generic data, however, one can tell that

the code for the defined XML structure does not differ by very much compared to that

developed with structures, apart from the obvious Class and Structure declarations.

An example illustrating this has been provided in Figure 1; the code in said example has

been structured to hold some data that would be present in a typical business memo,

 5

whereas the structure defined in the web service client developed for CUMIS actually

holds financial data. The same overall concept, however, is the same.

Figure 1. Code for a typical XML structure as classes and structures in VB.NET.

As can be seen in Figure 1, there is very little that differs in both cases; both have one

root node and the same amount of nodes and other nested elements. The member

variables in the classes have been purposely declared as Public so they can be easily

accessed and manipulated outside each of their respective classes. This avoids having to

declare separate properties with Get and/or Set accessors/mutators. However, CUMIS

may prefer to use said accessors/mutators if there is an absolute need to protect the

member variables from being modified and/or accessed outside of the class or if the data

needs to be manipulated within the class itself. As mentioned in 2.1, serializing each of

the sets of code in Figure 1 using the respective serialization methods for classes and

structures contained in the CreateCase class (see Appendix A) results in the generation

of the exact same XML code, included in Figure 2 on the next page.

<XmlRoot(ElementName:= "memo")> _
Public Class MemoClass
 <XmlElement(ElementName:= "header")> _
 Public Header As HeaderClass

 <XmlElement(ElementName:= "body")> _
 Public Body As String

 <XmlElement(ElementName:= "signedby")> _
 Public SignedName As FirstLastClass
End Class

Public Class HeaderClass
 <XmlElement(ElementName:= "to")> _
 Public ToName As FirstLastClass

 <XmlElement(ElementName:= "from")> _
 Public FromName As FirstLastClass

 <XmlElement(ElementName:= "date")> _
 Public DateMMDDYYYY As DateClass

 <XmlElement(ElementName:= "subject")> _
 Public Subject As String
End Class

Public Class FirstLastClass
 <XmlElement(ElementName:= "firstname")> _
 Public FirstName As String

 <XmlElement(ElementName:= "lastname")> _
 Public LastName As String
End Class

<XmlRoot(ElementName:= "memo")> _
Public Structure MemoStruct
 <XmlElement(ElementName:= "header")> _
 Dim Header As HeaderStruct

 <XmlElement(ElementName:= "body")> _
 Dim Body As String

 <XmlElement(ElementName:= "signedby")> _
 Dim SignedName As FirstLastStruct
End Structure

Public Structure HeaderStruct
 <XmlElement(ElementName:= "to")> _
 Dim ToName As FirstLastStruct

 <XmlElement(ElementName:= "from")> _
 Dim FromName As FirstLastStruct

 <XmlElement(ElementName:= "date")> _
 Dim DateMMDDYYYY As DateStruct

 <XmlElement(ElementName:= "subject")> _
 Dim Subject As String
End Structure

Public Structure FirstLastStruct
 <XmlElement(ElementName:= "firstname")> _
 Dim FirstName As String

 <XmlElement(ElementName:= "lastname")> _
 Dim LastName As String
End Structure

 6

Figure 2. Generated XML code from the serialized VB.NET code in Figure 1.

Despite the same XML being generated above in Figure 2, there is slightly more of a

difference in the code in Appendix A, used to serialize both MemoClass and MemoStruct

in Figure 1 separately. More specifically, before the Serializer method is called to

serialize the MemoClass class (the final XML’s root node), multiple instances of each one

of the other classes (depending on how many member variables are using those classes as

types) will need to be declared in addition to the instance of MemoClass ; only a single

instance of the main structure MemoStruct needs to be declared. The latter is true

because all structures in VB.NET have an implicit parameterless public constructor

which initializes all member variables recursively, meaning if a member variable within a

structure is declared as a another structure (e.g., Header), that other instance will be

initialized as well, and so on and so forth [3].

<?xml version =" 1.0 " ?>
<memo xmlns:xsi =" http://www.w3.org/2001/XMLSchema-instance "
xmlns:xsd =" http://www.w3.org/2001/XMLSchema " >
 < header >
 < to >
 < firstname >John </ firstname >
 < lastname >Doe</ lastname >
 </ to >
 < from >
 < firstname >Jane </ firstname >
 < lastname >Doe</ lastname >
 </ from >
 < date >
 < month >12</ month >
 < day >31</ day >
 < year >9999 </ year >
 </ date >
 < subject >Business </ subject >
 </ header >
 < body >Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras purus nisi,
fringilla vitae pulvinar eget, malesuada vitae leo. Nullam eleifend quam ligula, ut
elementum nulla. Proin volutpat leo id ante suscipi t sit amet imperdiet metus egestas.
Nullam turpis lectus, consectetur sit amet pharetra non, ullamcorper nec neque. In hac
habitasse platea dictumst. Proin dignissim orci sit amet nunc sollicitudin lacinia.
Sed bibendum tempor arcu vitae dapibus. Vestibulum nisi dolor, rhoncus vel aliquet ac,
porta in risus. Mauris sodales, lacus auctor porta adipiscing, magna sapien
sollicitudin erat, quis vulputate urna nisi et null a. Ut et ipsum arcu. Nam ut quam
ipsum. Nunc a quam orci, eleifend vehicula velit. P hasellus malesuada, turpis
ullamcorper aliquet convallis, dui nisl lacinia nib h, non scelerisque nibh nibh quis
velit. Nam lectus enim, eleifend quis accumsan quis , lacinia eget eros. Donec
vestibulum leo at nunc tincidunt bibendum. </ body >
 < signedname >
 < firstname >Jane </ firstname >
 < lastname >Doe</ lastname >
 </ signedname >
</ memo>

 7

3 Quantifying the VB.NET Code

3.1 Introduction

Before having quantified the code used to serialize both MemoClass and MemoStruct in

Figure 1, it was initially believed that calling each of the methods used to serialize

MemoClass and MemoStruct , classSerialize and structSerialize in the

CreateCase class (see Appendix A), respectively, would result in a shorter runtime for

structSerialize . This assumption was based on two facts:

1) In order to serialize MemoClass , instances of each of the other classes need to be

declared, most likely adding on to the total runtime of classSerialize , and

2) Like structs in the C# programming language (also based on the .NET

Framework), structures, unlike classes, do not require heap allocation; variables in

structures contain the data, whereas a variable in a class contains a reference to

said data, hence the need for the additional declarations and additional

assignments mentioned in 3.1, also likely to increase runtime [3], [4].

3.2 Quantitative Runtime Analysis

As mentioned in 3.1, instances of each of the other classes need to be declared in order

for MemoClass to be serialized, as well as a few additional assignments. Theoretically,

this would mean that each additional declaration (five in total) and each additional data

assignment (five in total) would be required to run in a total of �(10) time (order of 10

time), equivalent to simply �(1). In other words, the difference in runtime of

classSerialize versus that of structSerialize should not be significant.

The runtime of the classSerialize and structSerialize methods were measured

separately by first creating two DateTime objects, storing the start and end times in said

objects and then finding the elapsed time between the two by using a TimeSpan object

and converting it into seconds. The result of this calculation was written to a console

window and taken note of. The Main() method used has been included in Figure 3.

 8

Figure 3. Method used to calculate the runtime of the serialization methods.

The method in Figure 3 was run exactly fourty times for each of the classSerialize

and structSerialize methods, changing the number of XML elements and levels of

nested XML elements generated through serialization every ten trials (i.e., moving data

from one member variable and removing it from the other, as well as removing unneeded

classes/structures). To understand what this means in terms of code, please refer to

Appendix B.

After running the method in Figure 3 (as well as that modified to call structSerialize),

the average runtimes in Table 1 were calculated using the complete set of data in

Appendix C for each of the modified serialization methods listed in Appendix B.

Elements 1 2 3 3
Nested Elements 0 0 4 4
Further Nested
Elements

0 0 0 7

Class Runtime (s) 0.221875 0.223438 0.237500 0.240625
Structure Runtime (s) 0.223438 0.225000 0.232813 0.246875

Table 1. Average runtimes of modified serialization methods in seconds.

Sub Main()
 Static start_time As DateTime
 Static stop_time As DateTime
 Dim elapsed_time As TimeSpan

 Dim ms As New MemoryStream()
 Dim newCert As New CreateCase()

 'Start the timer
 start_time = Now

 'Serialize the data
 'Change to structSerialize for structures
 newCert.classSerialize(ms)

 'Stop the timer and calculate the difference
 stop_time = Now
 elapsed_time = stop_time.Subtract(start_time)

 'Close the memory stream
 ms.Flush()
 ms.Dispose()
 ms.Close()

 'Output the result
 Console.WriteLine(elapsed_time.TotalSeconds. _
 ToString("0.000000"))
End Sub

 9

For the most part, the average runtimes in Table 1 for both the classSerialize and the

structSerialize methods are very similar, and are identical to one another up to two

decimal places in every case. This similarity in runtime is more easily observed when the

values are plotted on a graph, such as that in Figure 4.

Figure 4. Average runtime values from Table 1 plotted on a bar graph.

From the data in Table 1, plotted in Figure 4, it is much easier to see that the largest

difference in runtime occurs when the greatest number of nested elements is serialized.

This behaviour was expected due to the Serialize method having to serialize objects

nested within others, whereas with only one element (and only two as well), the data

being serialized was contained within a single object, thus resulting in a shorter runtime

for both classes and structures. The percent differences in runtime, calculated between

classes and structures, have been included in Table 2.

Elements 1 2 3 3
Nested Elements 0 0 4 4
Further Nested
Elements

0 0 0 7

Percent Difference (%) 0.7018 0.6969 1.9934 2.5641

Table 2. Percent differences in runtime between classes and structures.

0.200

0.210

0.220

0.230

0.240

0.250

1 2 3, 4 3, 4, 7R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of XML Elements,

Followed by Nested Elements in Other Levels

Structure and Class Serialization Runtimes

Structure Class

 10

3.3 Possible Solutions

With the largest difference in runtime between classes and structures in Table 2 being

only approximately 2.5% (with classes serializing slightly faster in most cases), it should

be up to the developer developing a serializing application, and perhaps even the project

leader(s) as well, to decide on whether serialization should be implemented using classes

or structures.

In a production environment such as CUMIS’, where perhaps a thousand or so different

records can be serialized, the 2.5% difference in the total serialization runtime would

only represent approximately 6-7 seconds, which is quite minimal. With structures being

slightly easier to implement, in other words, with structures only needing a single

instantiation, it may be favourable for CUMIS to simply use them as opposed to classes.

However, should CUMIS find the need to manipulate the data stored in said structures

before being serialized or want to protect the data within said structures, then they may

want to use classes in order to serialize their data instead since structures are not as

customizable.

In addition to the above, CUMIS may want to limit the number of levels of nested

elements being used when serializing data to keep runtime to a minimum. As can be

easily observed in Table 1 and Figure 4, introducing a new level of nested elements into a

class or a structure can easily increase serialization runtime by approximately 3.5% per

new level introduced! Splitting data up into multiple elements in the same level has little

to no noticeable effect on the serialization runtime of classes or structures and thus,

CUMIS may want to consider this as well instead of creating multiple new levels of

nested elements to store data.

These solutions will aid the Information Technology team in testing and rolling out the

web service client and CUMIS’ new web application promptly. Should CUMIS choose

to leave the VB.NET structures that have already been implemented as-is, bugs within

the web service client, if any, discovered by CUMIS employees, will be able to be

 11

addressed quickly due to the simple nature of the code (written using structures, as

mentioned in 2.2) that was already developed over this past work term.

 12

4 Conclusions

From the analysis in the report body, it is concluded that compared to classes, structures

are slightly easier to implement and use when dealing with XML serialization due to only

needing to declare a single instance of the main structure as opposed to multiple ones.

With classes specifically, this avoids having to assign other instances of classes to an

object within the main class being serialized.

In addition, the average runtimes, when serializing the same data using the same number

of elements and levels of nested elements, for both the classSerialize and the

structSerialize methods are, for the most part and up to a certain degree of accuracy,

identical. Using one or the other in a production environment such as CUMIS’ will not

bear very much of a noticeable effect when serializing thousands upon thousands of

records of data.

Lastly, increasing the number of levels of nested elements needing to be serialized does

have and can most certainly have an effect on runtime in a production environment, such

as CUMIS’, by approximately 3.5% per new level. Splitting data up into multiple

elements in the same level, however, does not.

 13

5 Recommendations

Based on the analysis and conclusions put forth in this report, it is recommended that

CUMIS implement the following recommendations:

1) For ease of development when XML serialization is involved, CUMIS’

developers should use structures. Classes should only be used instead in cases

where data within a structure needs to be modified within the structure itself or if

the data must be protected from either being accessed by or being modified by

another class.

2) CUMIS’ developers should limit the number of levels of nested elements being

used when serializing data to keep runtime to a minimum.

3) If data needs to be split up into separate elements, developers should ensure that

said data is split up into elements within the same level instead of being nested

any further.

By implementing one or more of the above recommendations, development of the web

service client will be completed in as little time as possible. CUMIS will also benefit in

testing and rolling out the web service client needed to import data into their new web

application promptly. It will also benefit them in keeping the overall length of time

needed to actually import data into their new web application to a minimum.

The implementation of these recommendations will allow CUMIS employees to begin

using its new web application as soon as possible. This will allow the Information

Technology team to deal with bugs, discovered by CUMIS employees, in the web service

application that may have been overlooked during initial development as quickly as

possible so as to keep disruption of the application to a minimum.

 14

Glossary

Accessor – A small method which is used to access objects from other parts of a
program.

Assembly – Partially compiled code for use in development of applications.

Class – A construct used to create custom types within an application.

Heap – A tree-like data structure.

Method – A subroutine that is made up of programming statements used to perform an
action on some data or to return data, usually associated with classes or objects.

Mutator – A small method which is used to change objects from other parts of a
program.

.NET Framework – A software framework by Microsoft.

Object – An instance of a class.

Parameter – A piece of data passed into a program or a class on which is dependent on
said data.

Property – In the context of this report, properties are implemented as a pair of
accessor/mutator methods.

Runtime – The length of time in which an application runs from beginning to end.

SQL – Structured Query Language. A database language used for managing data in a
database.

Structure – A data (value) type consisting of a number of other elements of many other
types.

VB.NET – Visual Basic .NET. An object-oriented programming language based off of
Visual Basic by Microsoft.

XML – Extensible Markup Language. A programming language used for encoding data.

 15

References

[1] The CUMIS Group Limited, “About CUMIS,” 2009. [Online]. Available:
http://www.cumis.com/cumis/freeFormDetail/0,2024,6190,00.html.
[Accessed: Aug. 24, 2009].

[2] Microsoft Corporation, “XML Serialization in the .NET Framework,” 2009.

[Online]. Available: http://msdn.microsoft.com/en-us/library/ms950721.aspx.
[Accessed: Aug. 24, 2009].

[3] Microsoft Corporation, “Structures and Classes,” 2009. [Online]. Available:
http://msdn.microsoft.com/en-us/library/2hkbth2a%28VS.71%29.aspx.
[Accessed: Aug. 24, 2009].

[4] A. Hejlsberg, S. Wiltamuth, and P. Golde, The C# Programming Language. 2nd
ed. Boston: Addison-Wesley, 2006, pp. 355

 16

Appendix A – Serializer Method Differences

Class Serialization – Main differences (compared to that of a structure) have been
highlighted in yellow.

Public Sub classSerialize(ByRef tempMemory As MemoryStream)
 'Declare instances of each class
 Dim businessMemo As New MemoClass
 Dim businessMemoHeader As New HeaderClass
 Dim businessMemoHeaderTo As New FirstLastClass
 Dim businessMemoHeaderFrom As New FirstLastClass
 Dim businessMemoHeaderDate As New DateClass
 Dim businessMemoSigned As New FirstLastClass

 'Declare an instance of XmlSerializer
 Dim XMLfrm As XmlSerializer = New _

XmlSerializer(businessMemo.GetType())

 'Data assignments
 businessMemoHeaderTo.FirstName = "John"
 businessMemoHeaderTo.LastName = "Doe"
 businessMemoHeaderFrom.FirstName = "Jane"
 businessMemoHeaderFrom.LastName = "Doe"
 businessMemoHeaderDate.Month = "12"
 businessMemoHeaderDate.Day = "31"
 businessMemoHeaderDate.Year = "9999"
 businessMemoHeader.Subject = "Business"
 businessMemoSigned.FirstName = "Jane"
 businessMemoSigned.LastName = "Doe"

 With businessMemoHeader
 .ToName = businessMemoHeaderTo
 .FromName = businessMemoHeaderFrom
 .DateMMDDYYYY = businessMemoHeaderDate
 End With

 With businessMemo
 .Header = businessMemoHeader
 .Body = "Lorem ipsum dolor sit amet..." 'Body clipped
 .SignedName = businessMemoSigned
 End With

 'Serialize data to the memory stream
 XMLfrm.Serialize(tempMemory, businessMemo)
 tempMemory.Flush()
 tempMemory.Position = 0
End Sub

 17

Structure Serialization

Public Sub structSerialize(ByRef tempMemory As MemoryStream)
 'Declare instances of the main structure
 Dim businessMemo As New MemoStruct

 'Declare an instance of XmlSerializer
 Dim XMLfrm As XmlSerializer = New _

XmlSerializer(businessMemo.GetType())

 'Data assignments
 With businessMemo
 .Header.ToName.FirstName = "John"
 .Header.ToName.LastName = "Doe"
 .Header.FromName.FirstName = "Jane"
 .Header.FromName.LastName = "Doe"
 .Header.DateMMDDYYYY.Month = "12"
 .Header.DateMMDDYYYY.Day = "31"
 .Header.DateMMDDYYYY.Year = "9999"
 .Header.Subject = "Business"

 .Body = "Lorem ipsum dolor sit amet..." 'Body clipped
 .SignedName.FirstName = "Jane"
 .SignedName.LastName = "Doe"
 End With

 'Serialize data to the memory stream
 XMLfrm.Serialize(tempMemory, businessMemo)
 tempMemory.Flush()
 tempMemory.Position = 0
End Sub

 18

Appendix B – Modified Serializer Methods and Results

One XML Element: <body >

Class Serializer

<XmlRoot(ElementName:= "memo")> _
Public Class MemoClass1
 <XmlElement(ElementName:= "body")> _
 Public Body As String
End Class

Public Sub classSerialize(ByRef tempMemory As MemoryStream)
 'Declare instances of each class
 Dim businessMemo As New MemoClass

 'Declare an instance of XmlSerializer
 Dim XMLfrm As XmlSerializer = New _

XmlSerializer(businessMemo.GetType())

 With businessMemo
 .Body = "TO: John Doe\nFROM: Jane Doe\nDATE: 12319999\nSUBJ ECT:
Business\nLorem ipsum dolor sit amet...\n\nJane Doe " 'Body clipped
 End With

 'Serialize data to the memory stream
 XMLfrm.Serialize(tempMemory, businessMemo)
 tempMemory.Flush()
 tempMemory.Position = 0
End Sub

Structure Serializer

<XmlRoot(ElementName:= "memo")> _
Public Structure MemoStruct
 <XmlElement(ElementName:= "body")> _
 Dim Body As String
End Structure

Public Sub classSerialize(ByRef tempMemory As MemoryStream)
 'Declare instances of each class
 Dim businessMemo As New MemoStruct

 'Declare an instance of XmlSerializer
 Dim XMLfrm As XmlSerializer = New _

XmlSerializer(businessMemo.GetType())

 'Continued on next page...

 19

 With businessMemo
 .Body = "TO: John Doe\nFROM: Jane Doe\nDATE: 12319999\nSUBJ ECT:
Business\nLorem ipsum dolor sit amet...\n\nJane Doe " 'Body clipped
 End With

'Serialize data to the memory stream
 XMLfrm.Serialize(tempMemory, businessMemo)
 tempMemory.Flush()
 tempMemory.Position = 0
End Sub

Serialized XML

<?xml version =" 1.0 " ?>
<memo xmlns:xsi =" http://www.w3.org/2001/XMLSchema-instance "
xmlns:xsd =" http://www.w3.org/2001/XMLSchema " >
 < body >
 TO: John Doe\nFROM: Jane Doe\nDATE: 12319999\nSUB JECT:
Business\nLorem ipsum dolor sit amet, consectetur a dipiscing elit. Cras
purus nisi, fringilla vitae pulvinar eget, malesuad a vitae leo. Nullam
eleifend quam ligula, ut elementum nulla. Proin vol utpat leo id ante
suscipit sit amet imperdiet metus egestas. Nullam t urpis lectus,
consectetur sit amet pharetra non, ullamcorper nec neque. In hac
habitasse platea dictumst. Proin dignissim orci sit amet nunc
sollicitudin lacinia. Sed bibendum tempor arcu vita e dapibus.
Vestibulum nisi dolor, rhoncus vel aliquet ac, port a in risus. Mauris
sodales, lacus auctor porta adipiscing, magna sapie n sollicitudin erat,
quis vulputate urna nisi et nulla. Ut et ipsum arcu . Nam ut quam ipsum.
Nunc a quam orci, eleifend vehicula velit. Phasellu s malesuada, turpis
ullamcorper aliquet convallis, dui nisl lacinia nib h, non scelerisque
nibh nibh quis velit. Nam lectus enim, eleifend qui s accumsan quis,
lacinia eget eros. Donec vestibulum leo at nunc tin cidunt
bibendum.\n\nJane Doe
 </ body >
</ memo>

Two XML Elements: <body >, < header >

Class Serializer

<XmlRoot(ElementName:= "memo")> _
Public Class MemoClass
 <XmlElement(ElementName:= "header")> _
 Public Header As String

 <XmlElement(ElementName:= "body")> _
 Public Body As String
End Class

 20

Public Sub classSerialize(ByRef tempMemory As MemoryStream)
 'Declare instances of each class
 Dim businessMemo As New MemoClass

 'Declare an instance of XmlSerializer
 Dim XMLfrm As XmlSerializer = New _

XmlSerializer(businessMemo.GetType())

 With businessMemo
 .Header = "TO: John Doe\nFROM: Jane Doe\nDATE:
12319999\nSUBJECT: Business"
 .Body = "Lorem ipsum dolor sit amet...\n\nJane Doe"
 'Body clipped
 End With

 'Serialize data to the memory stream
 XMLfrm.Serialize(tempMemory, businessMemo)
 tempMemory.Flush()
 tempMemory.Position = 0
End Sub

Structure Serializer

<XmlRoot(ElementName:= "memo")> _
Public Structure MemoStruct
 <XmlElement(ElementName:= "header")> _
 Dim Header As String

 <XmlElement(ElementName:= "body")> _
 Dim Body As String
End Structure

Public Sub classSerialize(ByRef tempMemory As MemoryStream)
 'Declare instances of each class
 Dim businessMemo As New MemoStruct

 'Continued on next page...

 'Declare an instance of XmlSerializer
 Dim XMLfrm As XmlSerializer = New _

XmlSerializer(businessMemo.GetType())

 With businessMemo
 .Header = "TO: John Doe\nFROM: Jane Doe\nDATE:
12319999\nSUBJECT: Business"
 .Body = "Lorem ipsum dolor sit amet...\n\nJane Doe"
 'Body clipped
 End With

 'Continued on next page...

 21

 'Serialize data to the memory stream
 XMLfrm.Serialize(tempMemory, businessMemo)
 tempMemory.Flush()
 tempMemory.Position = 0
End Sub

Serialized XML

<?xml version =" 1.0 " ?>
<memo xmlns:xsi =" http://www.w3.org/2001/XMLSchema-instance "
xmlns:xsd =" http://www.w3.org/2001/XMLSchema " >
 < header >
 TO: John Doe\nFROM: Jane Doe\nDATE: 12319999\nSUB JECT:
Business
 </ header >
 < body >
 Lorem ipsum dolor sit amet, consectetur adipiscin g elit.
Cras purus nisi, fringilla vitae pulvinar eget, mal esuada vitae leo.
Nullam eleifend quam ligula, ut elementum nulla. Pr oin volutpat leo id
ante suscipit sit amet imperdiet metus egestas. Nul lam turpis lectus,
consectetur sit amet pharetra non, ullamcorper nec neque. In hac
habitasse platea dictumst. Proin dignissim orci sit amet nunc
sollicitudin lacinia. Sed bibendum tempor arcu vita e dapibus.
Vestibulum nisi dolor, rhoncus vel aliquet ac, port a in risus. Mauris
sodales, lacus auctor porta adipiscing, magna sapie n sollicitudin erat,
quis vulputate urna nisi et nulla. Ut et ipsum arcu . Nam ut quam ipsum.
Nunc a quam orci, eleifend vehicula velit. Phasellu s malesuada, turpis
ullamcorper aliquet convallis, dui nisl lacinia nib h, non scelerisque
nibh nibh quis velit. Nam lectus enim, eleifend qui s accumsan quis,
lacinia eget eros. Donec vestibulum leo at nunc tin cidunt
bibendum.\n\nJane Doe
 </ body >
</ memo>

Three XML Elements: <body >, < header >, < signedname >

Four Nested XML Elements: <to >, < from >, < date >, < subject >

Class Serializer

<XmlRoot(ElementName:= "memo")> _
Public Class MemoClass
 <XmlElement(ElementName:= "header")> _
 Public Header As HeaderClass

 <XmlElement(ElementName:= "body")> _
 Public Body As String

 <XmlElement(ElementName:= "signedname")> _
 Public SignedName As String
End Class

'Continued on next page...

 22

Public Class HeaderClass
 <XmlElement(ElementName:= "to")> _
 Public ToName As String

 <XmlElement(ElementName:= "from")> _
 Public FromName As String

 <XmlElement(ElementName:= "date")> _
 Public DateMMDDYYYY As String

 <XmlElement(ElementName:= "subject")> _
 Public Subject As String
End Class

Public Sub classSerialize(ByRef tempMemory As MemoryStream)
 'Declare instances of each class
 Dim businessMemo As New MemoClass
 Dim businessMemoHeader As New HeaderClass

 'Declare an instance of XmlSerializer
 Dim XMLfrm As XmlSerializer = New _

XmlSerializer(businessMemo.GetType())

 With businessMemoHeader
 .ToName = "John Doe"
 .FromName = "Jane Doe"
 .DateMMDDYYYY = "12319999"
 .Subject = "Business"
 End With

 With businessMemo
 .Header = businessMemoHeader
 .Body = "Lorem ipsum dolor sit amet..."
 .SignedName = "Jane Doe"
 End With

 'Continued on next page...
 'Serialize data to the memory stream
 XMLfrm.Serialize(tempMemory, businessMemo)
 tempMemory.Flush()
 tempMemory.Position = 0
End Sub

Structure Serializer

<XmlRoot(ElementName:= "memo")> _
Public Structure MemoStruct
 <XmlElement(ElementName:= "header")> _
 Dim Header As HeaderStruct

 <XmlElement(ElementName:= "body")> _
 Dim Body As String

 'Continued on next page...

 23

 <XmlElement(ElementName:= "signedname")> _
 Dim SignedName As String
End Structure

Public Structure HeaderStruct
 <XmlElement(ElementName:= "to")> _
 Dim ToName As String

 'Continued on next page...

 <XmlElement(ElementName:= "from")> _
 Dim FromName As String

 <XmlElement(ElementName:= "date")> _
 Dim DateMMDDYYYY As String

 <XmlElement(ElementName:= "subject")> _
 Dim Subject As String
End Structure

Public Sub classSerialize(ByRef tempMemory As MemoryStream)
 'Declare instances of each class
 Dim businessMemo As New MemoStruct

 'Declare an instance of XmlSerializer
 Dim XMLfrm As XmlSerializer = New _

XmlSerializer(businessMemo.GetType())

 With businessMemo
 .Header.ToName = "John Doe"
 .Header.FromName = "Jane Doe"
 .Header.DateMMDDYYYY = "12319999"
 .Header.Subject = "Business"
 .Body = "Lorem ipsum dolor sit amet..."
 .SignedName = "Jane Doe"
 End With

 'Serialize data to the memory stream
 XMLfrm.Serialize(tempMemory, businessMemo)
 tempMemory.Flush()
 tempMemory.Position = 0
End Sub

 24

Serialized XML

<?xml version =" 1.0 " ?>
<memo xmlns:xsi =" http://www.w3.org/2001/XMLSchema-instance "
xmlns:xsd =" http://www.w3.org/2001/XMLSchema " >
 < header >
 < to >John Doe </ to >
 < from >Jane Doe </ from >
 < date >12319999 </ date >
 < subject >Business </ subject >
 </ header >
 < body >
 Lorem ipsum dolor sit amet, consectetur adipiscin g elit.
Cras purus nisi, fringilla vitae pulvinar eget, mal esuada vitae leo.
Nullam eleifend quam ligula, ut elementum nulla. Pr oin volutpat leo id
ante suscipit sit amet imperdiet metus egestas. Nul lam turpis lectus,
consectetur sit amet pharetra non, ullamcorper nec neque. In hac
habitasse platea dictumst. Proin dignissim orci sit amet nunc
sollicitudin lacinia. Sed bibendum tempor arcu vita e dapibus.
Vestibulum nisi dolor, rhoncus vel aliquet ac, port a in risus. Mauris
sodales, lacus auctor porta adipiscing, magna sapie n sollicitudin erat,
quis vulputate urna nisi et nulla. Ut et ipsum arcu . Nam ut quam ipsum.
Nunc a quam orci, eleifend vehicula velit. Phasellu s malesuada, turpis
ullamcorper aliquet convallis, dui nisl lacinia nib h, non scelerisque
nibh nibh quis velit. Nam lectus enim, eleifend qui s accumsan quis,
lacinia eget eros. Donec vestibulum leo at nunc tin cidunt bibendum.
 </ body >
 < signedname >Jane Doe </ signedname >
</ memo>

Three XML Elements:
<body >, < header >, < signedname >

Four Nested XML Elements:
<to >, < from >, < date >, < subject >, < firstname >, < lastname >

Seven Further Nested XML Elements:
<firstname > (x 2) , < lastname > (x 2) , < month >, < day >, < year >

See Figure 1, Figure 2, and Appendix A for code.

 25

Appendix C – Runtime Test Data

Class Runtime Test
(All runtimes in seconds.)

Elements 1 2 3 3
Nested Elements 0 0 4 4
Further Nested Elements 0 0 0 7
Trial 1 Runtime (s) 0.234375 0.250000 0.265625 0.250000
Trial 2 Runtime (s) 0.218750 0.234375 0.250000 0.250000
Trial 3 Runtime (s) 0.218750 0.218750 0.234375 0.234375
Trial 4 Runtime (s) 0.218750 0.218750 0.234375 0.234375
Trial 5 Runtime (s) 0.218750 0.218750 0.281250 0.250000
Trial 6 Runtime (s) 0.234375 0.218750 0.203125 0.234375
Trial 7 Runtime (s) 0.218750 0.218750 0.234375 0.218750
Trial 8 Runtime (s) 0.218750 0.218750 0.218750 0.234375
Trial 9 Runtime (s) 0.234375 0.218750 0.218750 0.250000
Trial 10 Runtime (s) 0.218750 0.218750 0.234375 0.250000
Average Runtime (s) 0.221875 0.223438 0.237500 0.240625

Structure Runtime Test
(All runtimes in seconds.)

Elements 1 2 3 3
Nested Elements 0 0 4 4
Further Nested Elements 0 0 0 7
Trial 1 Runtime (s) 0.218750 0.234375 0.234375 0.296875
Trial 2 Runtime (s) 0.218750 0.234375 0.234375 0.281250
Trial 3 Runtime (s) 0.234375 0.218750 0.234375 0.234375
Trial 4 Runtime (s) 0.218750 0.218750 0.234375 0.234375
Trial 5 Runtime (s) 0.234375 0.234375 0.218750 0.250000
Trial 6 Runtime (s) 0.218750 0.218750 0.234375 0.218750
Trial 7 Runtime (s) 0.218750 0.218750 0.218750 0.234375
Trial 8 Runtime (s) 0.234375 0.234375 0.234375 0.250000
Trial 9 Runtime (s) 0.218750 0.218750 0.218750 0.234375
Trial 10 Runtime (s) 0.218750 0.218750 0.265625 0.234375
Average Runtime (s) 0.223438 0.225000 0.232813 0.246875

