UNIVERSITY OF WATERLOO

Faculty of Engineering

Department of Electrical and Computer Engineering

Runtime Analysis of
XML Serialization in VB.NET

The CUMIS Group Limited
Burlington, Ontario

Prepared by
Michael A. Soares
ID [removed]
userid masoares
2A Computer Engineering
21 September 2009

[address removed]
21 September 2009

Dr. Manoj Sachdev, chair

Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario

N2L 3G1

Dear Sir:

This report, entitled “Runtime Analysis of XML Salization in VB.NET”, was prepared
as my 2A Work Report for The CUMIS Group Limitedhis report is in fulfilment of
the course WKRPT 200. The main purpose of thismdp to quantitatively analyse the
different methods in which data, whether contaieda database or another digital
storage medium, can be serialized into XML (i.e,npanipulated into a form in which
another software application can further manipulsééd data) and to offer several
recommendations which may help in developing fusgfware applications which may
use said serialization.

| was employed as a Developer and Technical Analystking with a group of

developers and project leaders managed by PauliKmgkrole was overseen by Emily
Beavis. My primary responsibilities included mattiilg and upgrading existing VB.NET
applications, developing web applications using XMASP.NET and VB.NET and
working with SQL databases.

| would like to thank Mrs. Emily Beavis for proviy me with encouragement, valuable
ideas and information over the work term which kdipne in finalizing this report. |
hereby confirm that | have received no further haghger than what is mentioned above in
writing this report. | also confirm this report haot been previously submitted for
academic credit at this or any other academicturtgin.

Sincerely,

Michael A. Soares
ID [removed]

Contributions

For the past four months, | was employed at The C&JMroup Limited (“CUMIS”) in

Burlington, Ontario as a Developer and Technicahlfst. | was part of the Information
Technology department which consists of approxiijal® to 20 members, eight of
which | worked and collaborated with on a daily ibasdealing with software

development and database manipulation.

The team that | worked with is responsible for gesig, developing, modifying and
upgrading both software and web applications (cee) in use by CUMIS employees
and credit unions across Canada. It consists ynadtiDevelopers and Technical
Analysts, such as myself during my employment aMI&] along with several Database
Administrators (DBAs). Software is designed, depeld and modified to meet CUMIS’
needs by working collaboratively with project leexleand members from other
departments and other Information Technology persbat CUMIS. All software code
developed at CUMIS is run through a thorough codeiew process with on-site
supervisors and is compiled and then tested byeprdgaders before being put into the

production environment.

While at CUMIS, my primary responsibilities involvevorking with new and existing
software code, but more specifically encompassed:
= Developing web applications using tools such asNEH., ASP.NET, XML and
HTML,
= Working with web services to interface differentlgeed applications,
= Upgrading already-existing code to be fully compliavith Microsoft's .NET 2.0
Framework and with CUMIS’ coding standards,
= Debugging and properly commenting already-existioge,
= Manipulating database objects within SQL databaseess, and
= Researching new technologies to evaluate their wilein CUMIS’ existing

environment.

For the majority of the term, | was diligent in wading already-existing VB.NET and
ASP.NET code to be fully compliant with the start¥abeing used by other developers at
CUMIS. At different times throughout the term, ésearched different ways of
minimizing the amount of time needed for code regias, for the most part, they were
unnecessarily time consuming; the result of myifigd involved creating several filters
for a third-party file comparison tool which igndpeth line and block comments within

code, something the tool included with Microsoltisual Studio 2005 is not capable of.

The research that was done on this topic was qstéficient in scope to be suitable for
a work term report. Towards the end of the termwdver, Mrs. Emily Beavis, my
supervisor, gave me the opportunity to start théalndevelopment of a new web
application that retrieves data from a SQL datalzamk converts or serializes said data
into Extensible Markup Language (XML) format, whican later be processed by
another application’s web service. However, d&taving CUMIS, | began to have some
doubts in the way that | began to code the webiegmn (VB.NET structures were
used), most likely affecting runtime (the lengtleded to run the application) which may
become quite lengthy by the end of the web appiina development. Thus, | decided
to challenge myself and took it upon myself to gealthe methods in which | began to
code the aforementioned web application and offee@es of possible solutions that
could be implemented to rectify any unwanted pentmce issues.

This is the main relationship between this repibt, knowledge | gained and the tasks |
performed while working at CUMIS. The data colezttand the analyses performed in
this work term report are beneficial to me in malifyerent ways, primarily because it

has given me the opportunity to learn well beyorhin thought | would in my first job

as a Developer and Technical Analyst. This progect this subsequent report have also
provided me with the ability to analyse and evauadde and quantitative data from a
completely different perspective, including bothe thode and data discussed in this

report.

In the broader scheme of things, my research @ réport topic should prove to be
beneficial for CUMIS and its developers. Sincénterdogy is changing at such a fast rate
at the present time, CUMIS has to constantly keepmith the development of said
technologies, but more specifically, software agtmle. In this report, | provide the
Information Technology department and its develspéth several recommendations on
how to properly serialize data and how to improyeoru the performance of any

application utilizing said XML serialization.

Executive Summary

The main purpose and scope of this report is tditgtimely and quantitatively analyse
using both VB.NET classes and structures to seealata into proper XML, which can
be later be manipulated by a web service. Thisrtepill suggest to CUMIS ways of
modifying a current web service client which maydar runtime, all while maintaining
functionality. | have identified several recommatidns in this report that will reduce
the runtime needed for data to be serialized anghmill, overall, allow CUMIS to

import data into its new web application in additime as possible.

The major points in this report are that each efrimjor sections in this report identify
and summarize the use of XML serialization and sahé¢he factors contributing to
serialization runtime. The first section descriltes application that has been initially
developed and the problem being analysed. Thendesection analyses XML
serialization and the different methods of seriaizdata (i.e., by using classes or
structures). The third section quantifies the radthused to serialize the data, as well as
several modified methods, analyses the resultaiat dad provides justifications for the
resultant runtimes. The final sections provideatasions and recommendations based
on the analyses in the preceding sections.

The major conclusion of this report will confirmathstructures are slightly easier to
implement and use when dealing with XML serialiaatdue to only needing to declare a
single instance of the main structure as oppos@aduitiple ones. In addition, it will also
show that the average runtimes, when serializiegsdime number of elements and levels
of nested elements, for data serialized using blatdses and structures are, for the most
part and up to a certain degree of accuracy, idantiLastly, this report will also confirm
that increasing the number of levels of nested etemneeding to be serialized can have
an effect on runtime in a production environmenghsas CUMIS’, by approximately

3.5% per new level.

Vi

Major recommendations in this report are also ifiedt in that CUMIS’ should use
structures wherever possible when working with Xb#rialization. CUMIS’ developers
should also limit the number of levels of nesteeneints being used when serializing
data to keep runtime to a minimum. If data needbetsplit up into separate elements,
developers should ensure that said data is splintgpelements within the same level

instead of being nested any further.

Vil

Table of Contents

(@0] a1 11101011} o 1S ii
EXECULIVE SUMIMAIY.... ittt e e e e e e e e e e e eeeseeeeeneeeeene Vi
IS o) T [USSP IX
IS 0o =1 o] = SRR X
1 o o 11 o 1o o S 1
1.1 XML Serialization & Web Service Client ... i, 1
A e V{1 o 0 1S PP PR PRSPPI 2
R T ToTo] o TP URPPPTTTR 2
O 1 U 1T 2
2 Working with XML Serializationcoimeeiiiiiiiiiiiiiiiiie e 4
22500 R | 01 1o To 11 T 1 o I PSSP 4
2.2 Defining and Serializing the XML Structurecccoooeeeeiiiiieiiiiiiiiiinn 4
3 Quantifying the VB.NET COdEuuuuuiiiiiiiieeiiiiiis e 7
1 700 R | 01 (o To 11 T 1o o PP PUUUUPTRPPRRN 7
3.2 Quantitative RUNIME ANAIYSISccevvertmmmmmm e eeeeeeeeeeeeeeeeeereeainnn e 7..
3.3 POSSIDIE SOIULIONS ...t 10
(@] 1] 11153 0] o 1< USRS 12
RECOMMENAALIONS.ot e e e e e 13
(€] 0115 oY/ 14
(] (=] (=T o =T ST 15
Appendix A — Serializer Method DIfferenCes ..coeeeevvvvvvveiiiiiiiei e 61
Appendix B — Modified Serializer Methods and ResuUlt..............ccoooeeiiieiiiinnee. 18
Appendix C — RUNIME TSt DALAc oo eee et e e e e e 25

viii

List of Figures

Figure 1. Code for a typical XML structure as ckssand structures in VB.NET. 5
Figure 2. Generated XML code from the serialized BT code in Figure 1................. 6

Figure 3. Method used to calculate the runtimenefderialization methods. 8
Figure 4. Average runtime values from Table 1 pldtbn a bar graph............ccccevvninnnne 9

List of Tables

Table 1. Average runtimes of modified serializatoathods in seconds. 8

Table 2. Percent differences in runtime betweesselsand Structures.ccoceveeveneen... 9

1 Introduction

The CUMIS Group Limited (“*CUMIS”), its principal eopanies, CUMIS Life Insurance
Company and CUMIS General Insurance Company andubsidiaries partner with
credit unions across Canada to deliver both coripetinsurance (e.g., home, auto, life,
disability, etc.) and other financial and non-fina solutions [1]. Most of the financial
tools and other software used by CUMIS employeas @artnered credit unions are
written and tested internally in order to offerdsaompetitive, as well as unique, financial

and non-financial solutions.

CUMIS is currently preparing to migrate some offitancial data from an older web
application to one that is newer and better sufteddoing business with its clients.
Unfortunately, the data migration is not as simgéeone might think. The Structured
Query Language (SQL) database structures for bpgiications are not identical. In
fact, none of the table or column names and datastyare equivalent, thus directly
copying over the old application’s SQL databasenas possible. One must either
manually enter records into the new applicationcode together a web service and
matching client which will map data from the oldoéipation’s database to the new one.

In this section, the purpose and scope of the tepar both set out and essential

background information is presented on the topic.

1.1 XML Serialization & Web Service Client
In general, the purpose of Extensible Markup Laggu@ML) serialization in the .NET

Framework is to convert objects created in one iegpbn into an open, standards-
compliant language which can be easily transpottedr consumed by any other
application which accepts said compliant languageput for further manipulation [2].

For CUMIS’ web service client, an example of whiakll be further discussed and
analysed in this report, XML serialization is ugedmnap data from the old finance web

application’s database into elements and attribuiegh can be later consumed and

1

further manipulated by its corresponding web servitn terms of the example that will
be further discussed, however, generic data is Igim@apped to a pre-formed XML

structure in VB.NET and is then serialized intogenXML.

1.2 Purpose

Because the form or structure of the serialize@/datresponding XML can be coded
together in more than one way, this report willie®n and analyse two such methods:
using VB.NET classes and structures. The sertadizaof both entities, both using the
same “dummy” or generic data, will be analysedemis of written code and runtime;
factors which may contribute to said length of timié also be identified. In addition,
this report will suggest ways of modifying said easlhich may favour runtime, all while

maintaining functionality.

1.3 Scope
This report will include qualitative and quantitegi analysis of using both VB.NET
classes and structures, serialized into proper Xihich can be consumed by the web

service.

1.4 Outline

The sections in this report identify and summatiee use of both VB.NET classes and
structures. This report also provides a qualieawnd a quantitative analysis of using
classes and structures as well as solutions orowimg the runtime of using each entity
all while maintaining the same functionality. Aogbary has also been included for easy
reference of technical terms used in this repoithe first section analyses XML
serialization and the different methods of seriafjizdata (i.e., by using classes or
structures). The second section quantifies thénoust used to serialize the data, as well

as several modified methods, analyses the resudt@at and provides justifications for

the resultant runtimes. Finally, conclusions aetbmmendations are outlined at the end

of the report.

2 Working with XML Serialization

2.1 Introduction

As mentioned in 1.1, XML serialization is used pamly when data, or more
specifically, objects within in an application, nilie converted to a standard format for
transport to another application or service; thsultant XML can also be stored
temporarily in memory or permanently for future nparhation [2]. When said XML is
deserialized by a secondary application, that isay when the XML is parsed and the
original objects are reconstructed, the originaladstored within the objects can be
manipulated in the way the secondary application been programmed to manipulate
said data (e.g., the data can be run through essefialgorithms or they can be stored in
a database). Both serialization and deserializaiioobjects can be done by creating an
instance of thexmiSerializer class, included in thgystem.Xml assembly in VB.NET,
followed by calling theserialize ~ andDeserialize ~ methods, respectively; this report

focuses primarily on thgerialize ~ method.

Two of the simplest methods of defining the XML e structure in VB.NET before
serialization occurs are by creating a root classtlle root node of the XML structure)
and multiple sub-classes or by creating a rootttre and multiple sub-structures within
whatever application is being developed. Seriadjzeither classes or structures will
result in the same final XML code, assuming theectwddo so is properly written.

2.2 Defining and Serializing the XML Structure

The web service client that was developed for CUM§es structures in VB.NET in
order to define the final structure of the ser@diz<ML. Side-by-side with similar code
written as classes used to hold some very simpiergedata, however, one can tell that
the code for the defined XML structure does nofediby very much compared to that
developed with structures, apart from the obviatss andStructure declarations.
An example illustrating this has been provided iguFe 1; the code in said example has

been structured to hold some data that would bseptein a typical business memo,

4

whereas the structure defined in the web servientcbeveloped for CUMIS actually

holds financial data. The same overall concepudwer, is the same.

<XmlRoot(ElementName:= "memo")> _

Public Class MemoClass

<XmlElement(ElementName:= "header")> _
Public Header As HeaderClass

<XmlElement(ElementName:= "body")>_
Public Body As String
<XmlElement(ElementName:= "signedby")> _

Public SignedName As FirstLastClass
End Class

Public Class HeaderClass
<XmlElement(ElementName:= "to")>_
Public ToName As FirstLastClass

<XmlElement(ElementName:= "from")> _
Public FromName As FirstLastClass

<XmlElement(ElementName:= "date")>_
Public DateMMDDYYYY As DateClass

<XmlElement(ElementName:=
Public Subject As String
End Class

"subject")>_

Public Class FirstLastClass
<XmlElement(ElementName:=
Public FirstName As String

<XmlElement(ElementName:=
Public LastName As String
End Class

"firstname")>_

"lasthame”)> _

<XmlRoot(ElementName:= "memo")> _
Public Structure MemoStruct
<XmlElement(ElementName:=
Dim Header As HeaderStruct

"header")> _

<XmlElement(ElementName:=
Dim Body As String

"body”)> _

<XmlElement(ElementName:= "signedby")> _
Dim SignedName As FirstLastStruct
End Structure

Public Structure HeaderStruct
<XmlElement(ElementName:= "to")>_
Dim ToName As FirstLastStruct

<XmlElement(ElementName:= “from")> _
Dim FromName As FirstLastStruct

<XmlElement(ElementName:= "date")> _
Dim DateMMDDYYYY As DateStruct

<XmlElement(ElementName:=
Dim Subject As String
End Structure

"subject")>_

Public Structure FirstLastStruct
<XmlElement(ElementName:=
Dim FirstName As String

“firsthname")> _

<XmlElement(ElementName:=
Dim LastName As String
End Structure

"lastname")> _

Figure 1. Code for a typical XML structure as classes angcstires in VB.NET.

As can be seen in Figure 1, there is very littlat tihffers in both cases; both have one
root node and the same amount of nodes and otleechelements. The member
variables in the classes have been purposely @eckEsPublic so they can be easily
accessed and manipulated outside each of theiectgp classes. This avoids having to
declare separate properties witht and/orset accessors/mutators. However, CUMIS
may prefer to use said accessors/mutators if tlee@n absolute need to protect the
member variables from being modified and/or acakssrside of the class or if the data
needs to be manipulated within the class itsel§ nfentioned in 2.1, serializing each of
the sets of code in Figure 1 using the respectéralization methods for classes and
structures contained in tl@eateCase class (see Appendix A) results in the generation

of the exact same XML code, included in Figure Zlennext page.

<?xml version ="1.0"7?>

<memo xmIns:xsi

xmins:xsd =" http://www.w3.0rg/2001/XMLSchema ">
< header >
< to >
< firsthame >John </ firsthname >
< lastname >Doe</ lastname >
</ to>
< from >
< firsthame >Jane </ firstname >
< lastname >Doe</ lastname >
</ from >
< date >
< month >12</ month >
< day>31</ day>
< year >9999</ year >
</ date >
< subject >Business </ subject >
</ header >

< body >Lorem ipsum dolor sit amet, consectetur adipiscing
fringilla vitae pulvinar eget, malesuada vitae leo.
elementum nulla. Proin volutpat leo id ante suscipi
Nullam turpis lectus, consectetur sit amet pharetra
habitasse platea dictumst. Proin dignissim orci sit
Sed bibendum tempor arcu vitae dapibus. Vestibulum
porta in risus. Mauris sodales, lacus auctor porta
sollicitudin erat, quis vulputate urna nisi et null
ipsum. Nunc a quam orci, eleifend vehicula velit. P
ullamcorper aliquet convallis, dui nisl lacinia nib
velit. Nam lectus enim, eleifend quis accumsan quis

=" http://www.w3.0rg/2001/XMLSchema-instance

elit. Cras purus nisi,
Nullam eleifend quam ligula, ut
t sit amet imperdiet metus egestas.
non, ullamcorper nec neque. In hac
amet nunc sollicitudin lacinia.
nisi dolor, rhoncus vel aliquet ac,
adipiscing, magna sapien
a. Ut et ipsum arcu. Nam ut quam
hasellus malesuada, turpis
h, non scelerisque nibh nibh quis
, lacinia eget eros. Donec

vestibulum leo at nunc tincidunt bibendum.
< signedname >
< firstname >Jane </ firsthame
< lasthame >Doe</ lastname >
</ signedname >
</ meme

</ body >

>

Figure 2. Generated XML code from the serialized VB.NET cod€&igure 1.

Despite the same XML being generated above in Ei@yrthere is slightly more of a
difference in the code in Appendix A, used to dex@abothMemoClass andMemoStruct

in Figure 1 separately. More specifically, befdine Serializer method is called to
serialize theviemoClass class (the final XML'’s root node), multiple instas of each one
of the other classes (depending on how many mewasgbles are using those classes as
types) will need to be declared in addition to th&tance ofviemoClass; only a single
instance of the main structunemoStruct needs to be declared. The latter is true
because all structures in VB.NET have an implia@trgmeterless public constructor
which initializes all member variables recursivatyganing if a member variable within a
structure is declared as a another structure (gegder), that other instance will be

initialized as well, and so on and so forth [3].

3 Quantifying the VB.NET Code

3.1 Introduction
Before having quantified the code used to seridbiath MemoClass andMemoStruct in
Figure 1, it was initially believed that calling ataof the methods used to serialize
MemoClass and MemoStruct , classSerialize and structSerialize in the
CreateCase class (see Appendix A), respectively, would regula shorter runtime for
structSerialize . This assumption was based on two facts:
1) In order to serializeélemoClass, instances of each of the other classes need to be
declared, most likely adding on to the total rusioiclassSerialize , and
2) Like structs in the C# programming language (alstseld on the .NET
Framework), structures, unlike classes, do notiredeap allocation; variables in
structures contain the data, whereas a variabke dtass contains a reference to
said data, hence the need for the additional dsadas and additional
assignments mentioned in 3.1, also likely to inseeauntime [3], [4].

3.2 Quantitative Runtime Analysis

As mentioned in 3.1, instances of each of the otlesses need to be declared in order
for MemoClass to be serialized, as well as a few additionalgmssents. Theoretically,
this would mean that each additional declaratiore(in total) and each additional data
assignment (five in total) would be required to rara total of0(10) time (order of 10
time), equivalent to simply0(1). In other words, the difference in runtime of

classSerialize versus that oftructSerialize should not be significant.

The runtime of theclassSerialize and structSerialize methods were measured
separately by first creating twamteTime objects, storing the start and end times in said
objects and then finding the elapsed time betwlentwo by using &imeSpan object
and converting it into seconds. The result of tagulation was written to a console

window and taken note of. Thvain() method used has been included in Figure 3.

Sub Main()
Static start_time As DateTime
Static stop_time As DateTime
Dim elapsed_time As TimeSpan

Dim ms As NewMemoryStream()
Dim newCert As NewCreateCase()

'Start the timer
start_time = Now

'Serialize the data
‘Change to structSerialize for structures
newCert.classSerialize(ms)

'Stop the timer and calculate the difference
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)

'Close the memory stream
ms.Flush()
ms.Dispose()
ms.Close()

'‘Output the result
Console.WriteLine(elapsed_time.TotalSeconds. _
ToString("0.000000")
End Sub

Figure 3. Method used to calculate the runtime of the seatibn methods.

The method in Figure 3 was run exactly fourty tinh@seach of thelassSerialize

and structSerialize methods, changing the number of XML elements awelé of
nested XML elements generated through serializagi@ry ten trials (i.e., moving data
from one member variable and removing it from ttieeq as well as removing unneeded
classes/structures). To understand what this meatsrms of code, please refer to
Appendix B.

After running the method in Figure 3 (as well aasttimodified to calbtructSerialize),
the average runtimes in Table 1 were calculatedgushe complete set of data in

Appendix C for each of the modified serializatiopthrods listed in Appendix B.

Elements 1 2 3 3
Nested Elements 0 0 4 4
Further Nested 0 0 0 E
Elements

Class Runtime (s) 0.221875 0.223438 0.23750(0.240625

Structure Runtime (s) 0.223438 0.225000 0.232813 0.246875
Table 1.Average runtimes of modified serialization methodseconds.

8

For the most part, the average runtimes in Talte both theclassSerialize

structSerialize

and the

methods are very similar, and are identical to anether up to two

decimal places in every case. This similarityuntime is more easily observed when the

values are plotted on a graph, such as that inr&igu

0.250
0.240
0.230
0.220
0.210
0.200

Runtime (seconds)

M Structure M Class

Structure and Class Serialization Runtimes

Number of XML Elements,
Followed by Nested Elements in Other Levels

3,4,7

Figure 4. Average runtime values from Table 1 plotted on ragoaph.

From the data in Table 1, plotted in Figure 4,sitmuch easier to see that the largest

difference in runtime occurs when the greatest remab nested elements is serialized.

This behaviour was expected due to fheealize

method having to serialize objects

nested within others, whereas with only one elenfantl only two as well), the data

being serialized was contained within a single ohjthus resulting in a shorter runtime

for both classes and structures. The percentrdiftees in runtime, calculated between

classes and structures, have been included in RPable

Elements 1 2 3 3
Nested Elements 0 0 4 4
Further Nested 0 0 0 E
Elements

Percent Difference (%) 0.7018 0.6969 1.9934 2.5641

Table 2.Percent differences in runtime between classestndtures.

3.3 Possible Solutions

With the largest difference in runtime between stssand structures in Table 2 being
only approximately 2.5% (with classes serializifighgly faster in most cases), it should
be up to the developer developing a serializindiegion, and perhaps even the project
leader(s) as well, to decide on whether seriabmashould be implemented using classes

or structures.

In a production environment such as CUMIS’, wheeehpps a thousand or so different
records can be serialized, the 2.5% differencehentotal serialization runtime would
only represent approximately 6-7 seconds, whiafuite minimal. With structures being
slightly easier to implement, in other words, wslructures only needing a single
instantiation, it may be favourable for CUMIS tonply use them as opposed to classes.
However, should CUMIS find the need to manipuldte tlata stored in said structures
before being serialized or want to protect the aathin said structures, then they may
want to use classes in order to serialize theia dlastead since structures are not as

customizable.

In addition to the above, CUMIS may want to limitet number of levels of nested
elements being used when serializing data to keapmme to a minimum. As can be
easily observed in TableahdFigure 4, introducing a new level of nested eletmanto a
class or a structure can easily increase serigizatintime by approximately 3.5% per
new level introduced! Splitting data up into mpllé elements in the same level has little
to no noticeable effect on the serialization ruetiof classes or structures and thus,
CUMIS may want to consider this as well insteadcadating multiple new levels of

nested elements to store data.

These solutions will aid the Information Technoldgam in testing and rolling out the
web service client and CUMIS’ new web applicatiaomptly. Should CUMIS choose
to leave the VB.NET structures that have alreadsnbenplemented as-is, bugs within

the web service client, if any, discovered by CUMiBIployees, will be able to be

10

addressed quickly due to the simple nature of thaec(written using structures, as

mentioned in 2.2) that was already developed dvsriast work term.

11

4 Conclusions

From the analysis in the report body, it is conellidhat compared to classes, structures
are slightly easier to implement and use when dgaliith XML serialization due to only
needing to declare a single instance of the mairctsire as opposed to multiple ones.
With classes specifically, this avoids having tsigis other instances of classes to an

object within the main class being serialized.

In addition, the average runtimes, when serializhmgsame data using the same number
of elements and levels of nested elements, for hbéhclassSerialize and the
structSerialize methods are, for the most part and up to a cedgnee of accuracy,
identical. Using one or the other in a productmvironment such as CUMIS’ will not
bear very much of a noticeable effect when ser@lizhousands upon thousands of

records of data.

Lastly, increasing the number of levels of nestieinents needing to be serialized does
have and can most certainly have an effect onmentn a production environment, such
as CUMIS’, by approximately 3.5% per new level. litBpg data up into multiple

elements in the same level, however, does not.

12

5 Recommendations

Based on the analysis and conclusions put fortthig report, it is recommended that
CUMIS implement the following recommendations:

1) For ease of development when XML serialization m/olved, CUMIS’
developers should use structures. Classes shalydbe used instead in cases
where data within a structure needs to be modifighin the structure itself or if
the data must be protected from either being aedebyg or being modified by
another class.

2) CUMIS’ developers should limit the number of levelsnested elements being
used when serializing data to keep runtime to amum.

3) If data needs to be split up into separate elemeetzelopers should ensure that
said data is split up into elements within the sdevel instead of being nested

any further.

By implementing one or more of the above recommeoids, development of the web
service client will be completed in as little tirae possible. CUMIS will also benefit in
testing and rolling out the web service client rezetb import data into their new web
application promptly. It will also benefit them keeping the overall length of time

needed to actually import data into their new wepligaation to a minimum.

The implementation of these recommendations wilvalCUMIS employees to begin
using its new web application as soon as possiblais will allow the Information

Technology team to deal with bugs, discovered byt®Jemployees, in the web service
application that may have been overlooked duringalndevelopment as quickly as

possible so as to keep disruption of the applicatioa minimum.

13

Glossary

Accessor —A small method which is used to access objects father parts of a
program.

Assembly —Partially compiled code for use in developmentpgflecations.

Class —A construct used to create custom types withinpgotieation

Heap —A tree-like data structure.

Method — A subroutine that is made up of programming statemased to perform an
action on some data or to return data, usuallycsisal with classes or objects.

Mutator — A small method which is used to change objects fratimer parts of a
program.

.NET Framework — A software framework by Microsoft.
Object — An instance of a class.

Parameter —A piece of data passed into a program or a classioch is dependent on
said data.

Property — In the context of this report, properties are impdated as a pair of
accessor/mutator methods.

Runtime —The length of time in which an application runsnfirbeginning to end.

SQL - Structured Query Language. A database language fosenanaging data in a
database.

Structure — A data (value) type consisting of a number of ottlements of many other
types.

VB.NET - Visual Basic .NET. An object-oriented programmiagguage based off of
Visual Basic by Microsoft.

XML — Extensible Markup Language. A programming langussgsd for encoding data.

14

References

[1]

[2]

[3]

[4]

The CUMIS Group Limited, “About CUMIS,” 2009. [Onke]. Available:
http://www.cumis.com/cumis/freeFormDetail/0,202486100.html.
[Accessed: Aug. 24, 2009].

Microsoft Corporation, “XML Serialization in the BI Framework,” 2009.
[Online]. Available: http://msdn.microsoft.com/estibrary/ms950721.aspx.
[Accessed: Aug. 24, 2009].

Microsoft Corporation, “Structures and Classes02JOnline]. Available:
http://msdn.microsoft.com/en-us/library/2hkbth2a%3871%29.aspx.
[Accessed: Aug. 24, 2009].

A. Hejlsberg, S. Wiltamuth, and P. Goldde C# Programming Language. 2nd
ed. Boston: Addison-Wesley, 2006, pp. 355

15

Appendix A — Serializer Method Differences

Class Serialization -Main differences (compared to that of a structunaye been
highlighted in yellow.

Public Sub classSerialize(ByRef tempMemory As MemoryStream)
'Declare instances of each class
Dim businessMemo As NewMemoClass
Dim businessMemoHeader = As NewHeaderClass
Dim businessMemoHeaderTo As NewFirstLastClass
Dim businessMemoHeaderFrom As NewFirstLastClass
Dim businessMemoHeaderDate As NewDateClass
Dim businessMemoSigned As NewFirstLastClass

'Declare an instance of XmlSerializer
Dim XMLfrm As XmlSerializer = New
XmlSerializer(businessMemo.GetType())

'Data assignments

businessMemoHeaderTo.FirstName = "John"
businessMemoHeaderTo.LastName = "Doe"
businessMemoHeaderFrom.FirstName = "Jane"
businessMemoHeaderFrom.LastName = "Doe"
businessMemoHeaderDate.Month = 12"
businessMemoHeaderDate.Day = "31"
businessMemoHeaderDate.Year = "9999"
businessMemoHeader.Subject = "Business"
businessMemoSigned.FirstName = "Jane"
businessMemoSigned.LastName = "Doe"

With businessMemoHeader

.ToName = businessMemoHeaderTo
.FromName = businessMemoHeaderFrom
.DateMMDDYYYY = businessMemoHeaderDate
End With

With businessMemo
.Header = businessMemoHeader

.Body = "Lorem ipsum dolor sit amet..." '‘Body clipped
.SignedName = businessMemoSigned
End With

'Serialize data to the memory stream
XMLfrm.Serialize(tempMemory, businessMemo)
tempMemory.Flush()
tempMemory.Position = 0

End Sub

16

Structure Serialization

Public Sub structSerialize(ByRef tempMemory As MemoryStream)
'Declare instances of the main structure
Dim businessMemo As NewMemoStruct

'Declare an instance of XmlSerializer
Dim XMLfrm As XmlSerializer = New
XmlSerializer(businessMemo.GetType())

'‘Data assignments

With businessMemo

.Header.ToName.FirstName = "John"
.Header.ToName.LastName = "Doe"
.Header.FromName.FirstName = "Jane"
.Header.FromName.LastName = "Doe"
.Header.DateMMDDYYYY.Month = 12"
.Header.DateMMDDYYYY.Day = "31"
.Header.DateMMDDYYYY.Year = "9999"
.Header.Subject = "Business"

.Body = "Lorem ipsum dolor sit amet..." '‘Body clipped
.SignedName.FirstName = "Jane"

.SignedName.LastName = "Doe"

End With

'Serialize data to the memory stream
XMLfrm.Serialize(tempMemory, businessMemo)
tempMemory.Flush()
tempMemory.Position = 0

End Sub

17

Appendix B — Modified Serializer Methods and Resul

One XML Element: <body >

Class Serializer

<XmlRoot(ElementName:= "memao")> _
Public Class MemoClassl
<XmlElement(ElementName:= "body")>
Public Body As String
End Class

Public Sub classSerialize(ByRef tempMemory As MemoryStream)
'Declare instances of each class
Dim businessMemo As NewMemoClass

'Declare an instance of XmlSerializer
Dim XMLfrm As XmlSerializer = New
XmlSerializer(businessMemo.GetType())

With businessMemo

.Body = "TO: John Doe\nFROM: Jane Doe\nDATE: 12319999\nSUBJ
Business\nLorem ipsum dolor sit amet...\n\nJane Doe " 'Body clipped
End With

'Serialize data to the memory stream
XMLfrm.Serialize(tempMemory, businessMemo)
tempMemory.Flush()
tempMemory.Position = 0

End Sub

Structure Serializer

<XmlRoot(ElementName:= "memo")> _
Public ~ Structure MemoStruct
<XmlElement(ElementName:= "body")> _
Dim Body As String
End Structure

ECT:

Public Sub classSerialize(ByRef tempMemory As MemoryStream)
'Declare instances of each class
Dim businessMemo As NewMemoStruct

'Declare an instance of XmlSerializer
Dim XMLfrm As XmlSerializer = New
XmlSerializer(businessMemo.GetType())

'‘Continued on next page...

18

With businessMemo

.Body = "TO: John Doe\nFROM: Jane Doe\nDATE: 12319999\nSUBJ
Business\nLorem ipsum dolor sit amet...\n\nJane Doe " 'Body clipped
End With

'Serialize data to the memory stream
XMLfrm.Serialize(tempMemory, businessMemo)
tempMemory.Flush()
tempMemory.Position = 0

End Sub

Serialized XML

ECT:

<?xml version ="1.0"?>
<memo xmins:xsi =" http://www.w3.0rg/2001/XMLSchema-instance "
xmins:xsd =" http://www.w3.0rg/2001/XMLSchema ">

< body >

TO: John Doe\nFROM: Jane Doe\nDATE: 12319999\nSUB JECT:

Business\nLorem ipsum dolor sit amet, consectetur a dipiscing elit. Cras
purus nisi, fringilla vitae pulvinar eget, malesuad a vitae leo. Nullam
eleifend quam ligula, ut elementum nulla. Proin vol utpat leo id ante
suscipit sit amet imperdiet metus egestas. Nullam t urpis lectus,
consectetur sit amet pharetra non, ullamcorper nec neque. In hac
habitasse platea dictumst. Proin dignissim orci sit amet nunc
sollicitudin lacinia. Sed bibendum tempor arcu vita e dapibus.
Vestibulum nisi dolor, rhoncus vel aliquet ac, port a in risus. Mauris
sodales, lacus auctor porta adipiscing, magna sapie n sollicitudin erat,
quis vulputate urna nisi et nulla. Ut et ipsum arcu . Nam ut quam ipsum.
Nunc a quam orci, eleifend vehicula velit. Phasellu s malesuada, turpis
ullamcorper aliquet convallis, dui nisl lacinia nib h, non scelerisque
nibh nibh quis velit. Nam lectus enim, eleifend qui S accumsan quis,
lacinia eget eros. Donec vestibulum leo at nunc tin cidunt
bibendum.\n\nJane Doe

</ body >
</ meme

Two XML Elements: <body >, < header >

Class Serializer

<XmlRoot(ElementName:= "memo")> _

Public Class MemoClass

<XmlElement(ElementName:= "header")> _
Public Header As String

<XmlElement(ElementName:= "body")> _
Public Body As String
End Class

19

Public Sub classSerialize(ByRef tempMemory As MemoryStream)
'Declare instances of each class
Dim businessMemo As NewMemoClass

'Declare an instance of XmlSerializer
Dim XMLfrm As XmlSerializer = New
XmlSerializer(businessMemo.GetType())

With businessMemo
.Header = "TO: John Doe\nFROM: Jane Doe\nDATE:
12319999\nSUBJECT: Business"
.Body = "Lorem ipsum dolor sit amet...\n\nJane Doe"
'‘Body clipped
End With

'Serialize data to the memory stream
XMLfrm.Serialize(tempMemory, businessMemo)
tempMemory.Flush()
tempMemory.Position = 0

End Sub

Structure Serializer

<XmlRoot(ElementName:= "memo")> _
Public ~ Structure MemoStruct
<XmlElement(ElementName:= "header")> _
Dim Header As String

<XmlElement(ElementName:= "body")> _
Dim Body As String
End Structure

Public Sub classSerialize(ByRef tempMemory As MemoryStream)
'Declare instances of each class
Dim businessMemo As NewMemoStruct

'‘Continued on next page...

'Declare an instance of XmlSerializer
Dim XMLfrm As XmlSerializer = New
XmlSerializer(businessMemo.GetType())

With businessMemo
.Header = "TO: John Doe\nFROM: Jane Doe\nDATE:
12319999\nSUBJECT: Business"
.Body = "Lorem ipsum dolor sit amet...\n\nJane Doe"
'‘Body clipped
End With

'‘Continued on next page...

20

'Serialize data to the memory stream
XMLfrm.Serialize(tempMemory, businessMemo)
tempMemory.Flush()
tempMemory.Position = 0

End Sub

Serialized XML

<?xml version ="1.0"7?7>
<memo xmins:xsi =" http://www.w3.0rg/2001/XMLSchema-instance "
xmins:xsd =" http://www.w3.0rg/2001/XMLSchema ">

< header >

TO: John Doe\nFROM: Jane Doe\nDATE: 12319999\nSUB JECT:

Business

</ header >

< body >

Lorem ipsum dolor sit amet, consectetur adipiscin g elit.

Cras purus nisi, fringilla vitae pulvinar eget, mal esuada vitae leo.
Nullam eleifend quam ligula, ut elementum nulla. Pr oin volutpat leo id
ante suscipit sit amet imperdiet metus egestas. Nul lam turpis lectus,
consectetur sit amet pharetra non, ullamcorper nec neque. In hac
habitasse platea dictumst. Proin dignissim orci sit amet nunc
sollicitudin lacinia. Sed bibendum tempor arcu vita e dapibus.
Vestibulum nisi dolor, rhoncus vel aliquet ac, port a in risus. Mauris
sodales, lacus auctor porta adipiscing, magna sapie n sollicitudin erat,
quis vulputate urna nisi et nulla. Ut et ipsum arcu . Nam ut quam ipsum.
Nunc a quam orci, eleifend vehicula velit. Phasellu s malesuada, turpis
ullamcorper aliquet convallis, dui nisl lacinia nib h, non scelerisque
nibh nibh quis velit. Nam lectus enim, eleifend qui S accumsan quis,
lacinia eget eros. Donec vestibulum leo at nunc tin cidunt
bibendum.\n\nJane Doe

</ body >
</ meme

Three XML Elements: <body >, < header >, < signedname >
Four Nested XML Elements:<to >, < from >, < date >, < subject >

Class Serializer

<XmlRoot(ElementName:= "memo")> _

Public Class MemoClass

<XmlElement(ElementName:= "header")> _
Public Header As HeaderClass

<XmlElement(ElementName:= "body")> _
Public Body As String

<XmlElement(ElementName:= "signedname")> _
Public SignedName As String
End Class

'‘Continued on next page...

21

Public Class HeaderClass

<XmlElement(ElementName:= "to")> _
Public ToName As String

<XmlElement(ElementName:= "from")> _
Public FromName As String
<XmlElement(ElementName:= "date")> _

Public DateMMDDYYYY As String

<XmlElement(ElementName:= "subject”)> _
Public Subject As String

End Class

Public Sub classSerialize(

ByRef tempMemory As MemoryStream)

'Declare instances of each class
Dim businessMemo As NewMemoClass
Dim businessMemoHeader = As NewHeaderClass

'Declare an instance of XmlSerializer
Dim XMLfrm As XmlSerializer = New _
XmlSerializer(businessMemo.GetType())

With businessMemoHeader

.ToName = "John Doe"
.FromName = "Jane Doe"
.DateMMDDYYYY = "12319999"
.Subject = "Business"

End With

With businessMemo

.Header = businessMemoHeader

.Body = “Lorem ipsum dolor sit amet..."
.SignedName = "Jane Doe"
End With

'‘Continued on next page...

'Serialize data to the me

mory stream

XMLfrm.Serialize(tempMemory, businessMemo)

tempMemory.Flush()
tempMemory.Position = 0
End Sub

Structure Serializer

<XmlRoot(ElementName:=

||memou)> _

Public Structure MemoStruct
<XmlElement(ElementName:= "header")> _
Dim Header As HeaderStruct

<XmlElement(ElementName:= "body")> _

Dim Body As String

'‘Continued on next page...

22

<XmlElement(ElementName:= "signedname")>

Dim SignedName As String
End Structure

Public Structure HeaderStruct
<XmlElement(ElementName:= "to")>
Dim ToName As String

'‘Continued on next page...

<XmlElement(ElementName:= "from")>
Dim FromName As String

<XmlElement(ElementName:= "date")> _
Dim DateMMDDYYYY As String

<XmlElement(ElementName:= "subject”)> _
Dim Subject As String
End Structure

Public Sub classSerialize(ByRef tempMemory
'Declare instances of each class
Dim businessMemo As NewMemoStruct

'Declare an instance of XmlSerializer
Dim XMLfrm As XmlSerializer = New _
XmlSerializer(businessMemo.GetType())

With businessMemo

.Header.ToName = "John Doe"
.Header.FromName = "Jane Doe"
.Header.DateMMDDYYYY = "12319999"
.Header.Subject = "Business"

.Body = “Lorem ipsum dolor sit amet..."
.SignedName = "Jane Doe"

End With

'Serialize data to the memory stream
XMLfrm.Serialize(tempMemory, businessMemo)
tempMemory.Flush()
tempMemory.Position = 0

End Sub

23

As MemoryStream)

Serialized XML

<?xml version ="1.0""?>

<memo xmins:xsi =" http://www.w3.0rg/2001/XMLSchema-instance

xmins:xsd =" http://www.w3.0rg/2001/XMLSchema

< header >

< to >John Doe </to >

< from >Jane Doe </ from >

< date >12319999 </ date >

< subject >Business </ subject >
</ header >
< body >

Lorem ipsum dolor sit amet, consectetur adipiscin

Cras purus nisi, fringilla vitae pulvinar eget, mal
Nullam eleifend quam ligula, ut elementum nulla. Pr
ante suscipit sit amet imperdiet metus egestas. Nul
consectetur sit amet pharetra non, ullamcorper nec
habitasse platea dictumst. Proin dignissim orci sit
sollicitudin lacinia. Sed bibendum tempor arcu vita
Vestibulum nisi dolor, rhoncus vel aliquet ac, port
sodales, lacus auctor porta adipiscing, magna sapie
quis vulputate urna nisi et nulla. Ut et ipsum arcu
Nunc a quam orci, eleifend vehicula velit. Phasellu
ullamcorper aliquet convallis, dui nisl lacinia nib
nibh nibh quis velit. Nam lectus enim, eleifend qui
lacinia eget eros. Donec vestibulum leo at nunc tin

</ body >

< signedname >Jane Doe </ signedname >
</ meme

Three XML Elements:

<body >, < header >, < signedname >

Four Nested XML Elements:

<to >, < from >, < date >, < subject >, < firstname

Seven Further Nested XML Elements:

g elit.
esuada vitae leo.
oin volutpat leo id
lam turpis lectus,
neque. In hac
amet nunc
e dapibus.

a in risus. Mauris

n sollicitudin erat,

. Nam ut quam ipsum.
s malesuada, turpis
h, non scelerisque

S accumsan quis,
cidunt bibendum.

> < lastname >

<firsthame > (x2) ,< lasthame > (x2) ,< month>, < day>, < year >

See Figure 1, Figure 2, and Appendix A for code.

24

Appendix C — Runtime Test Data

Class Runtime Test

(All runtimes in seconds.)

25

Elements 1 2 3 3

Nested Elements 0 0 4 4

Further Nested Elements 0 0 0 7

Trial 1 Runtime (s) 0.234375 0.250000 0.265625 0.250000
Trial 2 Runtime (s) 0.218750 0.234375 0.250000 0.250000
Trial 3 Runtime (s) 0.218750 0.218750 0.234375 0.234375
Trial 4 Runtime (s) 0.218750 0.218750 0.234375 0.234375
Trial 5 Runtime (s) 0.218750 0.218750 0.281250 0.250000
Trial 6 Runtime (s) 0.234375 0.218750 0.203125 0.234375
Trial 7 Runtime (s) 0.218750 0.218750 0.234375 0.218750
Trial 8 Runtime (s) 0.218750 0.218750 0.218750 0.234375
Trial 9 Runtime (s) 0.234375 0.218750 0.218750 0.250000
Trial 10 Runtime (s) 0.218750 0.218750 0.234375 0.250000
Average Runtime (s) 0.221875 0.223438 0.237500 0.240625

Structure Runtime Test
(All runtimes in seconds.)

Elements 1 2 3 3

Nested Elements 0 0 4 4

Further Nested Elements 0 0 0 7

Trial 1 Runtime (s) 0.218750 0.234375 0.234375 0.296875
Trial 2 Runtime (S) 0.218750 0.234375 0.234375 0.281250
Trial 3 Runtime (s) 0.234375 0.218750 0.234375 0.234375
Trial 4 Runtime (s) 0.218750 0.218750 0.234375 0.234375
Trial 5 Runtime (S) 0.234375 0.234375 0.218750 0.250000
Trial 6 Runtime (s) 0.218750 0.218750 0.234375 0.218750
Trial 7 Runtime (s) 0.218750 0.218750 0.218750 0.234375
Trial 8 Runtime (s) 0.234375 0.234375 0.234375 0.250000
Trial 9 Runtime (s) 0.218750 0.218750 0.218750 0.234375
Trial 10 Runtime (s) 0.218750 0.218750 0.265625 0.234375
Average Runtime (s) 0.223438 0.225000 0.232813 0.246875

